mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* cvcuda resize * cvcuda center crop * cvcuda resize * add a fdtensor in fdmat * get cv mat and get tensor support gpu * paddleclas cvcuda preprocessor * fix compile err * fix windows compile error * rename reused to cached * address comment * remove debug code * add comment * add manager run * use cuda and cuda used * use cv cuda doc * address comment --------- Co-authored-by: Jason <jiangjiajun@baidu.com>
93 lines
3.1 KiB
C++
93 lines
3.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "fastdeploy/utils/utils.h"
|
|
#include "fastdeploy/vision/common/processors/mat.h"
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include <unordered_map>
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
/*! @brief Enable using FlyCV to process image while deploy vision models.
|
|
* Currently, FlyCV in only available on ARM(Linux aarch64/Android), so will
|
|
* fallback to using OpenCV in other platform
|
|
*/
|
|
FASTDEPLOY_DECL void EnableFlyCV();
|
|
|
|
/// Disable using FlyCV to process image while deploy vision models.
|
|
FASTDEPLOY_DECL void DisableFlyCV();
|
|
|
|
/*! @brief Set the cpu num threads of ProcLib.
|
|
*/
|
|
FASTDEPLOY_DECL void SetProcLibCpuNumThreads(int threads);
|
|
|
|
class FASTDEPLOY_DECL Processor {
|
|
public:
|
|
// default_lib has the highest priority
|
|
// all the function in `processor` will force to use
|
|
// default_lib if this flag is set.
|
|
// DEFAULT means this flag is not set
|
|
// static ProcLib default_lib;
|
|
|
|
virtual std::string Name() = 0;
|
|
|
|
virtual bool ImplByOpenCV(Mat* mat) {
|
|
FDERROR << Name() << " Not Implement Yet." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
virtual bool ImplByFlyCV(Mat* mat) {
|
|
return ImplByOpenCV(mat);
|
|
}
|
|
|
|
virtual bool ImplByCuda(Mat* mat) {
|
|
return ImplByOpenCV(mat);
|
|
}
|
|
|
|
virtual bool ImplByCvCuda(Mat* mat) {
|
|
return ImplByOpenCV(mat);
|
|
}
|
|
|
|
virtual bool operator()(Mat* mat, ProcLib lib = ProcLib::DEFAULT);
|
|
|
|
protected:
|
|
// Update and get the cached tensor from the cached_tensors_ map.
|
|
// The tensor is indexed by a string.
|
|
// If the tensor doesn't exists in the map, then create a new tensor.
|
|
// If the tensor exists and shape is getting larger, then realloc the buffer.
|
|
// If the tensor exists and shape is not getting larger, then return the
|
|
// cached tensor directly.
|
|
FDTensor* UpdateAndGetCachedTensor(
|
|
const std::vector<int64_t>& new_shape, const FDDataType& data_type,
|
|
const std::string& tensor_name, const Device& new_device = Device::CPU,
|
|
const bool& use_pinned_memory = false);
|
|
|
|
// Create an input tensor on GPU and save into cached_tensors_.
|
|
// If the Mat is on GPU, return the mat->Tensor() directly.
|
|
// If the Mat is on CPU, then create a cached GPU tensor and copy the mat's
|
|
// CPU tensor to this new GPU tensor.
|
|
FDTensor* CreateCachedGpuInputTensor(Mat* mat,
|
|
const std::string& tensor_name);
|
|
|
|
private:
|
|
std::unordered_map<std::string, FDTensor> cached_tensors_;
|
|
};
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|