Files
FastDeploy/fastdeploy/vision/common/processors/base.h
Wang Xinyu 62e051e21d [CVCUDA] CMake integration, vison processor CV-CUDA integration, PaddleClas support CV-CUDA (#1074)
* cvcuda resize

* cvcuda center crop

* cvcuda resize

* add a fdtensor in fdmat

* get cv mat and get tensor support gpu

* paddleclas cvcuda preprocessor

* fix compile err

* fix windows compile error

* rename reused to cached

* address comment

* remove debug code

* add comment

* add manager run

* use cuda and cuda used

* use cv cuda doc

* address comment

---------

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-01-30 09:33:49 +08:00

93 lines
3.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/utils/utils.h"
#include "fastdeploy/vision/common/processors/mat.h"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <unordered_map>
namespace fastdeploy {
namespace vision {
/*! @brief Enable using FlyCV to process image while deploy vision models.
* Currently, FlyCV in only available on ARM(Linux aarch64/Android), so will
* fallback to using OpenCV in other platform
*/
FASTDEPLOY_DECL void EnableFlyCV();
/// Disable using FlyCV to process image while deploy vision models.
FASTDEPLOY_DECL void DisableFlyCV();
/*! @brief Set the cpu num threads of ProcLib.
*/
FASTDEPLOY_DECL void SetProcLibCpuNumThreads(int threads);
class FASTDEPLOY_DECL Processor {
public:
// default_lib has the highest priority
// all the function in `processor` will force to use
// default_lib if this flag is set.
// DEFAULT means this flag is not set
// static ProcLib default_lib;
virtual std::string Name() = 0;
virtual bool ImplByOpenCV(Mat* mat) {
FDERROR << Name() << " Not Implement Yet." << std::endl;
return false;
}
virtual bool ImplByFlyCV(Mat* mat) {
return ImplByOpenCV(mat);
}
virtual bool ImplByCuda(Mat* mat) {
return ImplByOpenCV(mat);
}
virtual bool ImplByCvCuda(Mat* mat) {
return ImplByOpenCV(mat);
}
virtual bool operator()(Mat* mat, ProcLib lib = ProcLib::DEFAULT);
protected:
// Update and get the cached tensor from the cached_tensors_ map.
// The tensor is indexed by a string.
// If the tensor doesn't exists in the map, then create a new tensor.
// If the tensor exists and shape is getting larger, then realloc the buffer.
// If the tensor exists and shape is not getting larger, then return the
// cached tensor directly.
FDTensor* UpdateAndGetCachedTensor(
const std::vector<int64_t>& new_shape, const FDDataType& data_type,
const std::string& tensor_name, const Device& new_device = Device::CPU,
const bool& use_pinned_memory = false);
// Create an input tensor on GPU and save into cached_tensors_.
// If the Mat is on GPU, return the mat->Tensor() directly.
// If the Mat is on CPU, then create a cached GPU tensor and copy the mat's
// CPU tensor to this new GPU tensor.
FDTensor* CreateCachedGpuInputTensor(Mat* mat,
const std::string& tensor_name);
private:
std::unordered_map<std::string, FDTensor> cached_tensors_;
};
} // namespace vision
} // namespace fastdeploy