mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Add BetaForAlphaBar, ConvertModelOutput, SetTimesteps, and constructor for DPMSolverMultistepScheduler * tmp * Add DPMSolverFirstOrderUpdate * Add ScaleModelInput * Add MultiStepDPMSolverSecondOrderUpdate * add MultiStepDPMSolverThirdOrderUpdate * Add Step * Add FASTDEPLOY_DECL * Add AddNoise * Fix operator * update * Fix DPMSolverMultistepScheduler * Upgrade Slice * Fix DPMSolverFirstOrderUpdate * remove FASTDEPLOY_DECL * Add config for dpm solver
266 lines
11 KiB
C++
266 lines
11 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
|
|
#include "fastdeploy/core/fd_tensor.h"
|
|
#include "fastdeploy/function/eigen.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace function {
|
|
|
|
#define DEFINE_ELEMENTWISE_OP(name) \
|
|
template <typename T> struct name##RawKernel { \
|
|
void operator()(const FDTensor& x, const FDTensor& y, int axis, \
|
|
FDTensor* out) { \
|
|
if (x.Shape() == y.Shape()) { \
|
|
SameDimsElementwiseCompute<SameDims##name##Functor<T>>()(x, y, out); \
|
|
} else { \
|
|
auto x_dims = x.Shape(); \
|
|
auto y_dims = y.Shape(); \
|
|
if (x_dims.size() >= y_dims.size()) { \
|
|
ElementwiseCompute<name##Functor<T>, T>(x, y, axis, \
|
|
name##Functor<T>(), out); \
|
|
} else { \
|
|
ElementwiseCompute<Inverse##name##Functor<T>, T>( \
|
|
x, y, axis, Inverse##name##Functor<T>(), out); \
|
|
} \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
inline void GetMidDims(const std::vector<int64_t>& x_dims,
|
|
const std::vector<int64_t>& y_dims, const int axis,
|
|
int* pre, int* n, int* post,
|
|
int* is_run_common_broadcast) {
|
|
*pre = 1;
|
|
*n = 1;
|
|
*post = 1;
|
|
*is_run_common_broadcast = 0;
|
|
for (int i = 0; i < axis; ++i) {
|
|
(*pre) *= x_dims[i];
|
|
}
|
|
for (int i = 0; i < y_dims.size(); ++i) {
|
|
if (x_dims[i + axis] != y_dims[i]) {
|
|
FDASSERT(y_dims[i] == 1 || x_dims[i + axis] == 1,
|
|
"Broadcast dimension mismatch. Operands "
|
|
"could not be broadcast together with the shape of "
|
|
"X = [%s] and the shape of Y = [%s]. Received [%d] "
|
|
"in X is not equal to [%d] in Y.",
|
|
Str(x_dims).c_str(), Str(y_dims).c_str(), x_dims[i + axis],
|
|
y_dims[i]);
|
|
*is_run_common_broadcast = 1;
|
|
return;
|
|
}
|
|
(*n) *= y_dims[i];
|
|
}
|
|
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
|
|
(*post) *= x_dims[i];
|
|
}
|
|
}
|
|
|
|
inline std::vector<int64_t>
|
|
TrimTrailingSingularDims(const std::vector<int64_t>& dims) {
|
|
// Remove trailing dimensions of size 1 for y
|
|
auto actual_dims_size = dims.size();
|
|
for (; actual_dims_size != 0; --actual_dims_size) {
|
|
if (dims[actual_dims_size - 1] != 1)
|
|
break;
|
|
}
|
|
if (actual_dims_size == dims.size())
|
|
return dims;
|
|
std::vector<int64_t> trim_dims;
|
|
trim_dims.resize(actual_dims_size);
|
|
for (int i = 0; i < actual_dims_size; ++i) {
|
|
trim_dims[i] = dims[i];
|
|
}
|
|
return trim_dims;
|
|
}
|
|
|
|
inline int GetElementwiseIndex(const int64_t* x_dims_array, const int max_dim,
|
|
const int64_t* index_array) {
|
|
int index_ = 0;
|
|
for (int i = 0; i < max_dim; i++) {
|
|
if (x_dims_array[i] > 1) {
|
|
index_ = index_ * x_dims_array[i] + index_array[i];
|
|
}
|
|
}
|
|
return index_;
|
|
}
|
|
|
|
inline void UpdateElementwiseIndexArray(const int64_t* out_dims_array,
|
|
const int max_dim,
|
|
int64_t* index_array) {
|
|
for (int i = max_dim - 1; i >= 0; --i) {
|
|
++index_array[i];
|
|
if (index_array[i] >= out_dims_array[i]) {
|
|
index_array[i] -= out_dims_array[i];
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void GetBroadcastDimsArrays(const std::vector<int64_t>& x_dims,
|
|
const std::vector<int64_t>& y_dims,
|
|
int64_t* x_dims_array, int64_t* y_dims_array,
|
|
int64_t* out_dims_array, const int max_dim,
|
|
const int axis) {
|
|
FDASSERT(axis >= 0,
|
|
"Axis should be great than or equal to 0, but received axis is %d.",
|
|
axis);
|
|
FDASSERT(axis < max_dim,
|
|
"Axis should be less than %d, but received axis is %d.", max_dim,
|
|
axis);
|
|
if (x_dims.size() > y_dims.size()) {
|
|
std::fill(y_dims_array, y_dims_array + axis, 1);
|
|
if (axis + y_dims.size() < max_dim) {
|
|
std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
|
|
}
|
|
std::copy(x_dims.data(), x_dims.data() + x_dims.size(), x_dims_array);
|
|
std::copy(y_dims.data(), y_dims.data() + y_dims.size(),
|
|
y_dims_array + axis);
|
|
} else {
|
|
std::fill(x_dims_array, x_dims_array + axis, 1);
|
|
if (axis + x_dims.size() < max_dim) {
|
|
std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
|
|
}
|
|
std::copy(x_dims.data(), x_dims.data() + x_dims.size(),
|
|
x_dims_array + axis);
|
|
std::copy(y_dims.data(), y_dims.data() + y_dims.size(), y_dims_array);
|
|
}
|
|
|
|
for (int i = 0; i < max_dim; i++) {
|
|
FDASSERT(x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
|
|
y_dims_array[i] <= 1,
|
|
"Broadcast dimension mismatch. Operands "
|
|
"could not be broadcast together with the shape of "
|
|
"X = [%s] and the shape of Y = [%s]. Received [%d] "
|
|
"in X is not equal to [%d] in Y.",
|
|
Str(x_dims).c_str(), Str(y_dims).c_str(), x_dims[i + axis],
|
|
y_dims[i]);
|
|
if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
|
|
(x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
|
|
out_dims_array[i] = (std::max)(x_dims_array[i], y_dims_array[i]);
|
|
} else {
|
|
out_dims_array[i] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename T, typename OutType = T>
|
|
void CommonForwardBroadcastCPU(const FDTensor& x, const FDTensor& y,
|
|
FDTensor* z, int64_t* x_dims_array,
|
|
int64_t* y_dims_array, int64_t* out_dims_array,
|
|
int max_dim, Functor func,
|
|
const bool is_xsize_larger = true) {
|
|
std::vector<int64_t> index_array(max_dim, 0);
|
|
const T* x_data = reinterpret_cast<const T*>(x.Data());
|
|
const T* y_data = reinterpret_cast<const T*>(y.Data());
|
|
FDASSERT(x_data != nullptr, "The input X should not be empty.");
|
|
FDASSERT(y_data != nullptr, "The input X should not be empty.");
|
|
OutType* out_data = reinterpret_cast<OutType*>(z->Data());
|
|
|
|
const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
|
|
1, std::multiplies<int64_t>());
|
|
int x_index, y_index;
|
|
for (int out_index = 0; out_index < out_size; ++out_index) {
|
|
x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
|
|
y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
|
|
if (is_xsize_larger) {
|
|
out_data[out_index] = func(x_data[x_index], y_data[y_index]);
|
|
} else {
|
|
out_data[out_index] = func(y_data[y_index], x_data[x_index]);
|
|
}
|
|
|
|
UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename T, typename OutType = T>
|
|
void CommonElementwiseBroadcastForward(const FDTensor& x, const FDTensor& y,
|
|
FDTensor* z,
|
|
const std::vector<int64_t>& x_dims,
|
|
const std::vector<int64_t>& y_dims,
|
|
Functor func, int axis,
|
|
const bool is_xsize_larger = true) {
|
|
int x_dims_size = x_dims.size();
|
|
int y_dims_size = y_dims.size();
|
|
int max_dim = (std::max)(x_dims_size, y_dims_size);
|
|
axis = (axis == -1 ? std::abs(x_dims_size - y_dims_size) : axis);
|
|
FDASSERT(axis >= 0,
|
|
"Axis should be great than or equal to 0, but received axis is %d.",
|
|
axis);
|
|
FDASSERT(axis < max_dim,
|
|
"Axis should be less than %d, but received axis is %d.", max_dim,
|
|
axis);
|
|
std::vector<int64_t> x_dims_array(max_dim);
|
|
std::vector<int64_t> y_dims_array(max_dim);
|
|
std::vector<int64_t> out_dims_array(max_dim);
|
|
GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
|
|
y_dims_array.data(), out_dims_array.data(), max_dim,
|
|
axis);
|
|
FDTensor tmp;
|
|
tmp.Allocate(out_dims_array, TypeToDataType<OutType>::dtype);
|
|
CommonForwardBroadcastCPU<Functor, T, OutType>(
|
|
x, y, &tmp, x_dims_array.data(), y_dims_array.data(),
|
|
out_dims_array.data(), max_dim, func, is_xsize_larger);
|
|
*z = std::move(tmp);
|
|
}
|
|
|
|
template <typename Functor, typename T, typename OutType = T>
|
|
void ElementwiseCompute(const FDTensor& x, const FDTensor& y, int axis,
|
|
Functor func, FDTensor* z) {
|
|
auto x_dims = x.Shape();
|
|
auto y_dims = y.Shape();
|
|
bool is_xsize_larger = true;
|
|
int max_dim = x_dims.size();
|
|
if (x_dims.size() < y_dims.size()) {
|
|
is_xsize_larger = false;
|
|
max_dim = y_dims.size();
|
|
}
|
|
|
|
int diff_size = x_dims.size() - y_dims.size();
|
|
axis = (axis == -1 ? std::abs(diff_size) : axis);
|
|
FDASSERT(axis >= 0,
|
|
"Axis should be great than or equal to 0, but received axis is %d.",
|
|
axis);
|
|
FDASSERT(axis < max_dim,
|
|
"Axis should be less than %d, but received axis is %d.", max_dim,
|
|
axis);
|
|
|
|
int pre, n, post, is_run_common_broadcast, axis_trim = 0;
|
|
if (is_xsize_larger) {
|
|
auto y_dims_trimed = TrimTrailingSingularDims(y_dims);
|
|
axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
|
|
GetMidDims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
|
|
&is_run_common_broadcast);
|
|
} else {
|
|
auto x_dims_trimed = TrimTrailingSingularDims(x_dims);
|
|
axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
|
|
GetMidDims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
|
|
&is_run_common_broadcast);
|
|
}
|
|
// special case for common implementation.
|
|
// case 1: x=[2,3,1,5], y=[2,1,4,1]
|
|
// case 2: x=[2,3,4], y=[1,1,4]
|
|
CommonElementwiseBroadcastForward<Functor, T, OutType>(
|
|
x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
|
|
}
|
|
|
|
} // namespace function
|
|
} // namespace fastdeploy
|