Files
FastDeploy/fastdeploy/runtime/backends/backend.h
huangjianhui 76df90afc3 [Other] FastDeploy TensorRT && ONNX backend support to load model form memory (#1130)
* Update all backends load model from buffer

* Delete redundant code

* Format code style

* Format code style

* Delete redundant code

* Delete redundant code

* Add some FDASSERTs

* Update load model form memory when cloning engine

* Update clone engine code

* Update set_model_buffer api parameters with char pointer

* Release memory buffer variables after finish init backends

* Fix conflict

* Fix bug
2023-02-01 11:36:09 +08:00

89 lines
2.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/core/fd_type.h"
#include "fastdeploy/runtime/runtime_option.h"
namespace fastdeploy {
/*! @brief Information of Tensor
*/
struct TensorInfo {
std::string name; ///< Name of tensor
std::vector<int> shape; ///< Shape of tensor
FDDataType dtype; ///< Data type of tensor
friend std::ostream& operator<<(std::ostream& output,
const TensorInfo& info) {
output << "TensorInfo(name: " << info.name << ", shape: [";
for (size_t i = 0; i < info.shape.size(); ++i) {
if (i == info.shape.size() - 1) {
output << info.shape[i];
} else {
output << info.shape[i] << ", ";
}
}
output << "], dtype: " << Str(info.dtype) << ")";
return output;
}
};
class BaseBackend {
public:
bool initialized_ = false;
BaseBackend() {}
virtual ~BaseBackend() = default;
virtual bool Initialized() const { return initialized_; }
// Get number of inputs of the model
virtual int NumInputs() const = 0;
// Get number of outputs of the model
virtual int NumOutputs() const = 0;
// Get information of input tensor
virtual TensorInfo GetInputInfo(int index) = 0;
// Get information of output tensor
virtual TensorInfo GetOutputInfo(int index) = 0;
// Get information of all the input tensors
virtual std::vector<TensorInfo> GetInputInfos() = 0;
// Get information of all the output tensors
virtual std::vector<TensorInfo> GetOutputInfos() = 0;
// if copy_to_fd is true, copy memory data to FDTensor
// else share memory to FDTensor(only Paddle、ORT、TRT、OpenVINO support it)
virtual bool Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs,
bool copy_to_fd = true) = 0;
// Optional: For those backends which can share memory
// while creating multiple inference engines with same model file
virtual std::unique_ptr<BaseBackend> Clone(RuntimeOption &runtime_option,
void *stream = nullptr,
int device_id = -1) {
FDERROR << "Clone no support" << std::endl;
return nullptr;
}
};
} // namespace fastdeploy