Files
FastDeploy/tests/timvx/test_clas.cc
yeliang2258 81fbd54c9d [Other] Add tests for TIMVX (#1605)
* add tests for timvx

* add mobilenetv1 test

* update code

* fix log info

* update log

* fix test

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-14 10:31:36 +08:00

69 lines
2.1 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include "common.h"
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void InitAndInfer(const std::string& model_dir, const std::string& image_file,
const std::string& cls_result) {
auto model_file = model_dir + sep + "inference.pdmodel";
auto params_file = model_dir + sep + "inference.pdiparams";
auto config_file = model_dir + sep + "inference_cls.yaml";
fastdeploy::vision::EnableFlyCV();
fastdeploy::RuntimeOption option;
option.UseTimVX();
auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
assert(model.Initialized());
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
if (CompareClsResult(res, cls_result)) {
std::cout << model_dir + " run successfully." << std::endl;
} else {
std::cerr << model_dir + " run failed." << std::endl;
}
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
<< "Usage: test_clas path/to/quant_model "
"path/to/image "
"e.g ./test_clas ./ResNet50_vd_quant ./test.jpeg resnet50_clas.txt"
<< std::endl;
return -1;
}
std::string model_dir = argv[1];
std::string test_image = argv[2];
std::string cls_result = argv[3];
InitAndInfer(model_dir, test_image, cls_result);
return 0;
}