mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-13 12:23:55 +08:00

* add smoke model * add 3d vis * update code * update doc * mv paddle3d from detection to perception * update result for velocity * update code for CI * add set input data for TRT backend * add serving support for smoke model * update code * update code * update code --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
195 lines
6.6 KiB
C++
Executable File
195 lines
6.6 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <algorithm>
|
|
|
|
#include "fastdeploy/vision/visualize/visualize.h"
|
|
#include "opencv2/calib3d/calib3d.hpp"
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
using matrix = std::vector<std::vector<float>>;
|
|
|
|
matrix Multiple(const matrix a, const matrix b) {
|
|
const int m = a.size(); // a rows
|
|
if (m == 0) {
|
|
matrix c;
|
|
return c;
|
|
}
|
|
if (a[0].size() != b.size()) {
|
|
FDERROR << "A[m,n] * B[p,q], n must equal to p." << std::endl;
|
|
matrix c;
|
|
return c;
|
|
}
|
|
const int n = a[0].size(); // a cols
|
|
const int p = b[0].size(); // b cols
|
|
matrix c(m, std::vector<float>(p, 0));
|
|
for (auto i = 0; i < m; i++) {
|
|
for (auto j = 0; j < p; j++) {
|
|
for (auto k = 0; k < n; k++) c[i][j] += a[i][k] * b[k][j];
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
cv::Mat VisPerception(const cv::Mat& im, const PerceptionResult& result,
|
|
const std::string& config_file, float score_threshold,
|
|
int line_size, float font_size) {
|
|
if (result.scores.empty()) {
|
|
return im;
|
|
}
|
|
YAML::Node cfg;
|
|
try {
|
|
cfg = YAML::LoadFile(config_file);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return im;
|
|
}
|
|
|
|
std::vector<int> target_size;
|
|
for (const auto& op : cfg["Preprocess"]) {
|
|
std::string op_name = op["type"].as<std::string>();
|
|
if (op_name == "Resize") {
|
|
target_size = op["target_size"].as<std::vector<int>>();
|
|
}
|
|
}
|
|
|
|
std::vector<float> vec_k_data = cfg["k_data"].as<std::vector<float>>();
|
|
if (vec_k_data.size() != 9) {
|
|
FDERROR
|
|
<< "The K data load from the yaml file: " << config_file
|
|
<< " is unexpected, the expected size is 9, but the loaded size is: "
|
|
<< vec_k_data.size() << " ,maybe you should check this file."
|
|
<< std::endl;
|
|
return im;
|
|
}
|
|
matrix k_data(3, std::vector<float>());
|
|
for (auto j = 0; j < 3; j++) {
|
|
k_data[j].insert(k_data[j].begin(), vec_k_data.begin() + j * 3,
|
|
vec_k_data.begin() + j * 3 + 3);
|
|
}
|
|
|
|
std::vector<double> rvec = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
|
|
std::vector<double> tvec = {0, 0, 0};
|
|
|
|
matrix connect_line_id = {{1, 0}, {2, 7}, {3, 6}, {4, 5}, {1, 2}, {2, 3},
|
|
{3, 4}, {4, 1}, {0, 7}, {7, 6}, {6, 5}, {5, 0}};
|
|
|
|
int max_label_id =
|
|
*std::max_element(result.label_ids.begin(), result.label_ids.end());
|
|
std::vector<int> color_map = GenerateColorMap(max_label_id);
|
|
int h = im.rows;
|
|
int w = im.cols;
|
|
cv::Mat vis_im = im.clone();
|
|
cv::resize(im, vis_im, cv::Size(target_size[1], target_size[0]), 0, 0, 0);
|
|
for (size_t i = 0; i < result.scores.size(); ++i) {
|
|
if (result.scores[i] < 0.5) {
|
|
continue;
|
|
}
|
|
float h = result.boxes[i][4];
|
|
float w = result.boxes[i][5];
|
|
float l = result.boxes[i][6];
|
|
|
|
float x = result.center[i][0];
|
|
float y = result.center[i][1];
|
|
float z = result.center[i][2];
|
|
std::vector<float> x_corners = {0, l, l, l, l, 0, 0, 0};
|
|
std::vector<float> y_corners = {0, 0, h, h, 0, 0, h, h};
|
|
std::vector<float> z_corners = {0, 0, 0, w, w, w, w, 0};
|
|
|
|
for (auto j = 0; j < x_corners.size(); j++) {
|
|
x_corners[j] = x_corners[j] - l / 2;
|
|
y_corners[j] = y_corners[j] - h;
|
|
z_corners[j] = z_corners[j] - w / 2;
|
|
}
|
|
|
|
matrix corners_3d = {x_corners, y_corners, z_corners};
|
|
|
|
float ry = result.yaw_angle[i];
|
|
matrix rot_mat = {
|
|
{cosf(ry), 0, sinf(ry)}, {0, 1, 0}, {sinf(ry), 0, cosf(ry)}};
|
|
|
|
matrix rot_corners_3d = Multiple(rot_mat, corners_3d);
|
|
|
|
for (auto j = 0; j < rot_corners_3d[0].size(); j++) {
|
|
rot_corners_3d[0][j] += x;
|
|
rot_corners_3d[1][j] += y;
|
|
rot_corners_3d[2][j] += z;
|
|
}
|
|
|
|
auto corners_2d = Multiple(k_data, rot_corners_3d);
|
|
|
|
for (auto j = 0; j < corners_2d[0].size(); j++) {
|
|
corners_2d[0][j] /= corners_2d[2][j];
|
|
corners_2d[1][j] /= corners_2d[2][j];
|
|
}
|
|
|
|
std::vector<float> box2d = {
|
|
*std::min_element(corners_2d[0].begin(), corners_2d[0].end()),
|
|
*std::min_element(corners_2d[1].begin(), corners_2d[1].end()),
|
|
*std::max_element(corners_2d[0].begin(), corners_2d[0].end()),
|
|
*std::max_element(corners_2d[1].begin(), corners_2d[1].end())};
|
|
|
|
if (box2d[0] == 0 && box2d[1] == 0 && box2d[2] == 0 && box2d[3] == 0) {
|
|
continue;
|
|
}
|
|
|
|
std::vector<cv::Point3f> points3d;
|
|
for (auto j = 0; j < rot_corners_3d[0].size(); j++) {
|
|
points3d.push_back(cv::Point3f(rot_corners_3d[0][j], rot_corners_3d[1][j],
|
|
rot_corners_3d[2][j]));
|
|
}
|
|
cv::Mat rVec(3, 3, cv::DataType<double>::type, rvec.data());
|
|
cv::Mat tVec(3, 1, cv::DataType<double>::type, tvec.data());
|
|
std::vector<float> vec_k;
|
|
for (auto&& v : k_data) {
|
|
vec_k.insert(vec_k.end(), v.begin(), v.end());
|
|
}
|
|
cv::Mat intrinsicMat(3, 3, cv::DataType<float>::type, vec_k.data());
|
|
cv::Mat distCoeffs(5, 1, cv::DataType<double>::type);
|
|
std::vector<cv::Point2f> projectedPoints;
|
|
cv::projectPoints(points3d, rVec, tVec, intrinsicMat, distCoeffs,
|
|
projectedPoints);
|
|
|
|
int c0 = color_map[3 * result.label_ids[i] + 0];
|
|
int c1 = color_map[3 * result.label_ids[i] + 1];
|
|
int c2 = color_map[3 * result.label_ids[i] + 2];
|
|
cv::Scalar color = cv::Scalar(c0, c1, c2);
|
|
for (auto id = 0; id < connect_line_id.size(); id++) {
|
|
int p1 = connect_line_id[id][0];
|
|
int p2 = connect_line_id[id][1];
|
|
cv::line(vis_im, projectedPoints[p1], projectedPoints[p2], color, 1);
|
|
}
|
|
int font = cv::FONT_HERSHEY_SIMPLEX;
|
|
std::string score = std::to_string(result.scores[i]);
|
|
if (score.size() > 4) {
|
|
score = score.substr(0, 4);
|
|
}
|
|
std::string text = std::to_string(result.label_ids[i]) + ", " + score;
|
|
cv::Point2f original;
|
|
original.x = box2d[0];
|
|
original.y = box2d[1];
|
|
cv::putText(vis_im, text, original, font, font_size,
|
|
cv::Scalar(255, 255, 255), 1);
|
|
}
|
|
return vis_im;
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|