mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-14 20:55:57 +08:00

* [Sync][Internal] sync some internal codes * [Sync][Internal] sync some internal features of paddle3d inference * [Sync][Internal] sync some internal features of paddle3d inference
115 lines
3.8 KiB
C++
115 lines
3.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/perception/paddle3d/petr/preprocessor.h"
|
|
|
|
#include <iostream>
|
|
|
|
#include "fastdeploy/function/concat.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace perception {
|
|
|
|
PetrPreprocessor::PetrPreprocessor(const std::string& config_file) {
|
|
config_file_ = config_file;
|
|
FDASSERT(BuildPreprocessPipelineFromConfig(),
|
|
"Failed to create Paddle3DDetPreprocessor.");
|
|
initialized_ = true;
|
|
}
|
|
|
|
bool PetrPreprocessor::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
|
|
processors_.push_back(std::make_shared<Resize>(800, 450));
|
|
processors_.push_back(std::make_shared<Crop>(0, 130, 800, 320));
|
|
|
|
std::vector<float> mean{103.530, 116.280, 123.675};
|
|
std::vector<float> std{57.375, 57.120, 58.395};
|
|
bool scale = false;
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std, scale));
|
|
processors_.push_back(std::make_shared<Cast>("float"));
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
|
|
// Fusion will improve performance
|
|
FuseTransforms(&processors_);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PetrPreprocessor::Apply(FDMatBatch* image_batch,
|
|
std::vector<FDTensor>* outputs) {
|
|
if (image_batch->mats->empty()) {
|
|
FDERROR << "The size of input images should be greater than 0."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!initialized_) {
|
|
FDERROR << "The preprocessor is not initialized." << std::endl;
|
|
return false;
|
|
}
|
|
// There are 3 outputs, image, k_data, timestamp
|
|
outputs->resize(3);
|
|
int num_cams = static_cast<int>(image_batch->mats->size());
|
|
|
|
// Allocate memory for k_data
|
|
(*outputs)[1].Resize({1, num_cams, 4, 4}, FDDataType::FP32);
|
|
|
|
// Allocate memory for image_data
|
|
(*outputs)[0].Resize({1, num_cams, 3, 320, 800}, FDDataType::FP32);
|
|
|
|
// Allocate memory for timestamp
|
|
(*outputs)[2].Resize({1, num_cams}, FDDataType::FP32);
|
|
|
|
auto* image_ptr = reinterpret_cast<float*>((*outputs)[0].MutableData());
|
|
|
|
auto* k_data_ptr = reinterpret_cast<float*>((*outputs)[1].MutableData());
|
|
|
|
auto* timestamp_ptr = reinterpret_cast<float*>((*outputs)[2].MutableData());
|
|
|
|
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
|
|
FDMat* mat = &(image_batch->mats->at(i));
|
|
for (size_t j = 0; j < processors_.size(); ++j) {
|
|
if (!(*(processors_[j].get()))(mat)) {
|
|
FDERROR << "Failed to processs image:" << i << " in "
|
|
<< processors_[j]->Name() << "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < num_cams / 2 * 4 * 4; ++i) {
|
|
input_k_data_.push_back(input_k_data_[i]);
|
|
}
|
|
memcpy(k_data_ptr, input_k_data_.data(), num_cams * 16 * sizeof(float));
|
|
|
|
std::vector<float> timestamp(num_cams, 0.0f);
|
|
for (int i = num_cams / 2; i < num_cams; ++i) {
|
|
timestamp[i] = 1.0f;
|
|
}
|
|
memcpy(timestamp_ptr, timestamp.data(), num_cams * sizeof(float));
|
|
|
|
FDTensor* tensor = image_batch->Tensor(); // [num_cams,3,320,800]
|
|
tensor->ExpandDim(0); // [num_cams,3,320,800] -> [1,num_cams,3,320,800]
|
|
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
|
|
tensor->Data(), tensor->device,
|
|
tensor->device_id);
|
|
return true;
|
|
}
|
|
|
|
} // namespace perception
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|