Files
FastDeploy/fastdeploy/vision/perception/paddle3d/caddn/preprocessor.cc

113 lines
3.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/perception/paddle3d/caddn/preprocessor.h"
#include "fastdeploy/function/concat.h"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
namespace perception {
CaddnPreprocessor::CaddnPreprocessor(const std::string& config_file) {
config_file_ = config_file;
FDASSERT(BuildPreprocessPipeline(),
"Failed to create Paddle3DDetPreprocessor.");
initialized_ = true;
}
bool CaddnPreprocessor::BuildPreprocessPipeline() {
processors_.clear();
// preprocess
processors_.push_back(std::make_shared<BGR2RGB>());
std::vector<float> alpha = {1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0};
std::vector<float> beta = {0.0, 0.0, 0.0};
processors_.push_back(std::make_shared<Convert>(alpha, beta));
processors_.push_back(std::make_shared<Cast>("float"));
processors_.push_back(std::make_shared<HWC2CHW>());
// Fusion will improve performance
FuseTransforms(&processors_);
return true;
}
bool CaddnPreprocessor::Apply(FDMatBatch* image_batch,
std::vector<float>& input_cam_data,
std::vector<float>& input_lidar_data,
std::vector<FDTensor>* outputs) {
if (image_batch->mats->empty()) {
FDERROR << "The size of input images should be greater than 0."
<< std::endl;
return false;
}
if (!initialized_) {
FDERROR << "The preprocessor is not initialized." << std::endl;
return false;
}
// There are 3 outputs, image, cam_data, lidar_data
outputs->resize(3);
int batch = static_cast<int>(image_batch->mats->size());
// Allocate memory for cam_data
(*outputs)[1].Resize({batch, 3, 4}, FDDataType::FP32);
// Allocate memory for lidar_data
(*outputs)[2].Resize({batch, 4, 4}, FDDataType::FP32);
auto* cam_data_ptr = reinterpret_cast<float*>((*outputs)[1].MutableData());
auto* lidar_data_ptr = reinterpret_cast<float*>((*outputs)[2].MutableData());
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
FDMat* mat = &(image_batch->mats->at(i));
for (size_t j = 0; j < processors_.size(); ++j) {
if (!(*(processors_[j].get()))(mat)) {
FDERROR << "Failed to processs image:" << i << " in "
<< processors_[j]->Name() << "." << std::endl;
return false;
}
}
memcpy(cam_data_ptr + i * 12, input_cam_data.data(), 12 * sizeof(float));
memcpy(lidar_data_ptr + i * 16, input_lidar_data.data(),
16 * sizeof(float));
}
FDTensor* tensor = image_batch->Tensor();
(*outputs)[0].SetExternalData(tensor->Shape(), tensor->Dtype(),
tensor->Data(), tensor->device,
tensor->device_id);
return true;
}
bool CaddnPreprocessor::Run(std::vector<FDMat>* images,
std::vector<float>& input_cam_data,
std::vector<float>& input_lidar_data,
std::vector<FDTensor>* outputs) {
FDMatBatch image_batch(images);
PreApply(&image_batch);
bool ret = Apply(&image_batch, input_cam_data, input_lidar_data, outputs);
PostApply();
return ret;
}
} // namespace perception
} // namespace vision
} // namespace fastdeploy