mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-13 20:34:02 +08:00
97 lines
4.1 KiB
C++
97 lines
4.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindCaddn(pybind11::module& m) {
|
|
pybind11::class_<vision::perception::CaddnPreprocessor,
|
|
vision::ProcessorManager>(m, "CaddnPreprocessor")
|
|
.def(pybind11::init<std::string>())
|
|
.def("run",
|
|
[](vision::perception::CaddnPreprocessor& self,
|
|
std::vector<pybind11::array>& im_list,
|
|
std::vector<float>& cam_data, std::vector<float>& lidar_data) {
|
|
std::vector<vision::FDMat> images;
|
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
|
}
|
|
std::vector<FDTensor> outputs;
|
|
if (!self.Run(&images, cam_data, lidar_data, &outputs)) {
|
|
throw std::runtime_error(
|
|
"Failed to preprocess the input data in CaddnPreprocessor.");
|
|
}
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
outputs[i].StopSharing();
|
|
}
|
|
return outputs;
|
|
});
|
|
|
|
pybind11::class_<vision::perception::CaddnPostprocessor>(m,
|
|
"CaddnPostprocessor")
|
|
.def(pybind11::init<>())
|
|
.def("run",
|
|
[](vision::perception::CaddnPostprocessor& self,
|
|
std::vector<FDTensor>& inputs) {
|
|
std::vector<vision::PerceptionResult> results;
|
|
if (!self.Run(inputs, &results)) {
|
|
throw std::runtime_error(
|
|
"Failed to postprocess the runtime result in "
|
|
"CaddnPostprocessor.");
|
|
}
|
|
return results;
|
|
})
|
|
.def("run", [](vision::perception::CaddnPostprocessor& self,
|
|
std::vector<pybind11::array>& input_array) {
|
|
std::vector<vision::PerceptionResult> results;
|
|
std::vector<FDTensor> inputs;
|
|
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
|
|
if (!self.Run(inputs, &results)) {
|
|
throw std::runtime_error(
|
|
"Failed to postprocess the runtime result in "
|
|
"CaddnPostprocessor.");
|
|
}
|
|
return results;
|
|
});
|
|
|
|
pybind11::class_<vision::perception::Caddn, FastDeployModel>(m, "Caddn")
|
|
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
|
|
ModelFormat>())
|
|
.def("predict",
|
|
[](vision::perception::Caddn& self, pybind11::array& data,
|
|
std::vector<float>& cam_data, std::vector<float>& lidar_data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::PerceptionResult res;
|
|
self.Predict(mat, cam_data, lidar_data, &res);
|
|
return res;
|
|
})
|
|
.def("batch_predict",
|
|
[](vision::perception::Caddn& self,
|
|
std::vector<pybind11::array>& data, std::vector<float>& cam_data,
|
|
std::vector<float>& lidar_data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::PerceptionResult> results;
|
|
self.BatchPredict(images, cam_data, lidar_data, &results);
|
|
return results;
|
|
})
|
|
.def_property_readonly("preprocessor",
|
|
&vision::perception::Caddn::GetPreprocessor)
|
|
.def_property_readonly("postprocessor",
|
|
&vision::perception::Caddn::GetPostprocessor);
|
|
}
|
|
} // namespace fastdeploy
|