Files
FastDeploy/fastdeploy/vision/perception/paddle3d/caddn/caddn_pybind.cc

97 lines
4.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindCaddn(pybind11::module& m) {
pybind11::class_<vision::perception::CaddnPreprocessor,
vision::ProcessorManager>(m, "CaddnPreprocessor")
.def(pybind11::init<std::string>())
.def("run",
[](vision::perception::CaddnPreprocessor& self,
std::vector<pybind11::array>& im_list,
std::vector<float>& cam_data, std::vector<float>& lidar_data) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, cam_data, lidar_data, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in CaddnPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return outputs;
});
pybind11::class_<vision::perception::CaddnPostprocessor>(m,
"CaddnPostprocessor")
.def(pybind11::init<>())
.def("run",
[](vision::perception::CaddnPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<vision::PerceptionResult> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"CaddnPostprocessor.");
}
return results;
})
.def("run", [](vision::perception::CaddnPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<vision::PerceptionResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"CaddnPostprocessor.");
}
return results;
});
pybind11::class_<vision::perception::Caddn, FastDeployModel>(m, "Caddn")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::perception::Caddn& self, pybind11::array& data,
std::vector<float>& cam_data, std::vector<float>& lidar_data) {
auto mat = PyArrayToCvMat(data);
vision::PerceptionResult res;
self.Predict(mat, cam_data, lidar_data, &res);
return res;
})
.def("batch_predict",
[](vision::perception::Caddn& self,
std::vector<pybind11::array>& data, std::vector<float>& cam_data,
std::vector<float>& lidar_data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::PerceptionResult> results;
self.BatchPredict(images, cam_data, lidar_data, &results);
return results;
})
.def_property_readonly("preprocessor",
&vision::perception::Caddn::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::perception::Caddn::GetPostprocessor);
}
} // namespace fastdeploy