Files
FastDeploy/fastdeploy/vision/perception/paddle3d/caddn/caddn.h

84 lines
3.3 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/perception/paddle3d/caddn/preprocessor.h"
#include "fastdeploy/vision/perception/paddle3d/caddn/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace perception {
/*! @brief Caddn model object used when to load a Caddn model exported by Caddn.
*/
class FASTDEPLOY_DECL Caddn : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g Caddn/model.pdiparams
* \param[in] params_file Path of parameter file, e.g Caddn/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
Caddn(const std::string& model_file, const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
std::string ModelName() const { return "Paddle3D/Caddn"; }
/** \brief Predict the perception result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output perception result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& im,
std::vector<float>& input_cam_data,
std::vector<float>& input_lidar_data,
PerceptionResult* results);
/** \brief Predict the perception results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output perception result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<float>& input_cam_data,
std::vector<float>& input_lidar_data,
std::vector<PerceptionResult>* results);
/// Get preprocessor reference of Caddn
virtual CaddnPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of Caddn
virtual CaddnPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
CaddnPreprocessor preprocessor_;
CaddnPostprocessor postprocessor_;
bool initialized_ = false;
};
} // namespace perception
} // namespace vision
} // namespace fastdeploy