mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-13 20:34:02 +08:00

* first draft * update api name * fix bug * fix bug and * fix bug in c api * fix bug in c_api --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
234 lines
8.2 KiB
C++
234 lines
8.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/ppstructurev2_table.h"
|
|
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace pipeline {
|
|
PPStructureV2Table::PPStructureV2Table(
|
|
fastdeploy::vision::ocr::DBDetector* det_model,
|
|
fastdeploy::vision::ocr::Recognizer* rec_model,
|
|
fastdeploy::vision::ocr::StructureV2Table* table_model)
|
|
: detector_(det_model), recognizer_(rec_model), table_(table_model) {
|
|
Initialized();
|
|
}
|
|
|
|
bool PPStructureV2Table::SetRecBatchSize(int rec_batch_size) {
|
|
if (rec_batch_size < -1 || rec_batch_size == 0) {
|
|
FDERROR << "batch_size > 0 or batch_size == -1." << std::endl;
|
|
return false;
|
|
}
|
|
rec_batch_size_ = rec_batch_size;
|
|
return true;
|
|
}
|
|
|
|
int PPStructureV2Table::GetRecBatchSize() { return rec_batch_size_; }
|
|
|
|
bool PPStructureV2Table::Initialized() const {
|
|
if (detector_ != nullptr && !detector_->Initialized()) {
|
|
return false;
|
|
}
|
|
|
|
if (recognizer_ != nullptr && !recognizer_->Initialized()) {
|
|
return false;
|
|
}
|
|
|
|
if (table_ != nullptr && !table_->Initialized()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<PPStructureV2Table> PPStructureV2Table::Clone() const {
|
|
std::unique_ptr<PPStructureV2Table> clone_model =
|
|
utils::make_unique<PPStructureV2Table>(PPStructureV2Table(*this));
|
|
clone_model->detector_ = detector_->Clone().release();
|
|
clone_model->recognizer_ = recognizer_->Clone().release();
|
|
clone_model->table_ = table_->Clone().release();
|
|
return clone_model;
|
|
}
|
|
|
|
bool PPStructureV2Table::Predict(cv::Mat* img,
|
|
fastdeploy::vision::OCRResult* result) {
|
|
return Predict(*img, result);
|
|
}
|
|
|
|
bool PPStructureV2Table::Predict(const cv::Mat& img,
|
|
fastdeploy::vision::OCRResult* result) {
|
|
std::vector<fastdeploy::vision::OCRResult> batch_result(1);
|
|
bool success = BatchPredict({img}, &batch_result);
|
|
if (!success) {
|
|
return success;
|
|
}
|
|
*result = std::move(batch_result[0]);
|
|
return true;
|
|
};
|
|
|
|
bool PPStructureV2Table::BatchPredict(
|
|
const std::vector<cv::Mat>& images,
|
|
std::vector<fastdeploy::vision::OCRResult>* batch_result) {
|
|
batch_result->clear();
|
|
batch_result->resize(images.size());
|
|
std::vector<std::vector<std::array<int, 8>>> batch_boxes(images.size());
|
|
|
|
if (!detector_->BatchPredict(images, &batch_boxes)) {
|
|
FDERROR << "There's error while detecting image in PPOCR." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
for (int i_batch = 0; i_batch < batch_boxes.size(); ++i_batch) {
|
|
vision::ocr::SortBoxes(&(batch_boxes[i_batch]));
|
|
(*batch_result)[i_batch].boxes = batch_boxes[i_batch];
|
|
}
|
|
|
|
for (int i_batch = 0; i_batch < images.size(); ++i_batch) {
|
|
fastdeploy::vision::OCRResult& ocr_result = (*batch_result)[i_batch];
|
|
// Get croped images by detection result
|
|
const std::vector<std::array<int, 8>>& boxes = ocr_result.boxes;
|
|
const cv::Mat& img = images[i_batch];
|
|
std::vector<cv::Mat> image_list;
|
|
if (boxes.size() == 0) {
|
|
image_list.emplace_back(img);
|
|
} else {
|
|
image_list.resize(boxes.size());
|
|
for (size_t i_box = 0; i_box < boxes.size(); ++i_box) {
|
|
image_list[i_box] = vision::ocr::GetRotateCropImage(img, boxes[i_box]);
|
|
}
|
|
}
|
|
std::vector<int32_t>* cls_labels_ptr = &ocr_result.cls_labels;
|
|
std::vector<float>* cls_scores_ptr = &ocr_result.cls_scores;
|
|
|
|
std::vector<std::string>* text_ptr = &ocr_result.text;
|
|
std::vector<float>* rec_scores_ptr = &ocr_result.rec_scores;
|
|
|
|
std::vector<float> width_list;
|
|
for (int i = 0; i < image_list.size(); i++) {
|
|
width_list.push_back(float(image_list[i].cols) / image_list[i].rows);
|
|
}
|
|
std::vector<int> indices = vision::ocr::ArgSort(width_list);
|
|
|
|
for (size_t start_index = 0; start_index < image_list.size();
|
|
start_index += rec_batch_size_) {
|
|
size_t end_index =
|
|
std::min(start_index + rec_batch_size_, image_list.size());
|
|
if (!recognizer_->BatchPredict(image_list, text_ptr, rec_scores_ptr,
|
|
start_index, end_index, indices)) {
|
|
FDERROR << "There's error while recognizing image in PPOCR."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!table_->BatchPredict(images, batch_result)) {
|
|
FDERROR << "There's error while recognizing tables in images." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
for (int i_batch = 0; i_batch < batch_boxes.size(); ++i_batch) {
|
|
fastdeploy::vision::OCRResult& ocr_result = (*batch_result)[i_batch];
|
|
std::vector<std::vector<std::string>> matched(ocr_result.table_boxes.size(),
|
|
std::vector<std::string>());
|
|
|
|
std::vector<int> ocr_box;
|
|
std::vector<int> structure_box;
|
|
for (int i = 0; i < ocr_result.boxes.size(); i++) {
|
|
ocr_box = vision::ocr::Xyxyxyxy2Xyxy(ocr_result.boxes[i]);
|
|
ocr_box[0] -= 1;
|
|
ocr_box[1] -= 1;
|
|
ocr_box[2] += 1;
|
|
ocr_box[3] += 1;
|
|
|
|
std::vector<std::vector<float>> dis_list(ocr_result.table_boxes.size(),
|
|
std::vector<float>(3, 100000.0));
|
|
|
|
for (int j = 0; j < ocr_result.table_boxes.size(); j++) {
|
|
structure_box = vision::ocr::Xyxyxyxy2Xyxy(ocr_result.table_boxes[j]);
|
|
dis_list[j][0] = vision::ocr::Dis(ocr_box, structure_box);
|
|
dis_list[j][1] = 1 - vision::ocr::Iou(ocr_box, structure_box);
|
|
dis_list[j][2] = j;
|
|
}
|
|
|
|
// find min dis idx
|
|
std::sort(dis_list.begin(), dis_list.end(), vision::ocr::ComparisonDis);
|
|
matched[dis_list[0][2]].push_back(ocr_result.text[i]);
|
|
}
|
|
|
|
// get pred html
|
|
std::string html_str = "";
|
|
int td_tag_idx = 0;
|
|
auto structure_html_tags = ocr_result.table_structure;
|
|
for (int i = 0; i < structure_html_tags.size(); i++) {
|
|
if (structure_html_tags[i].find("</td>") != std::string::npos) {
|
|
if (structure_html_tags[i].find("<td></td>") != std::string::npos) {
|
|
html_str += "<td>";
|
|
}
|
|
if (matched[td_tag_idx].size() > 0) {
|
|
bool b_with = false;
|
|
if (matched[td_tag_idx][0].find("<b>") != std::string::npos &&
|
|
matched[td_tag_idx].size() > 1) {
|
|
b_with = true;
|
|
html_str += "<b>";
|
|
}
|
|
for (int j = 0; j < matched[td_tag_idx].size(); j++) {
|
|
std::string content = matched[td_tag_idx][j];
|
|
if (matched[td_tag_idx].size() > 1) {
|
|
// remove blank, <b> and </b>
|
|
if (content.length() > 0 && content.at(0) == ' ') {
|
|
content = content.substr(0);
|
|
}
|
|
if (content.length() > 2 && content.substr(0, 3) == "<b>") {
|
|
content = content.substr(3);
|
|
}
|
|
if (content.length() > 4 &&
|
|
content.substr(content.length() - 4) == "</b>") {
|
|
content = content.substr(0, content.length() - 4);
|
|
}
|
|
if (content.empty()) {
|
|
continue;
|
|
}
|
|
// add blank
|
|
if (j != matched[td_tag_idx].size() - 1 &&
|
|
content.at(content.length() - 1) != ' ') {
|
|
content += ' ';
|
|
}
|
|
}
|
|
html_str += content;
|
|
}
|
|
if (b_with) {
|
|
html_str += "</b>";
|
|
}
|
|
}
|
|
if (structure_html_tags[i].find("<td></td>") != std::string::npos) {
|
|
html_str += "</td>";
|
|
} else {
|
|
html_str += structure_html_tags[i];
|
|
}
|
|
td_tag_idx += 1;
|
|
} else {
|
|
html_str += structure_html_tags[i];
|
|
}
|
|
}
|
|
(*batch_result)[i_batch].table_html = html_str;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace pipeline
|
|
} // namespace fastdeploy
|