Files
FastDeploy/fastdeploy/vision/ocr/ppocr/ocrmodel_pybind.cc
zengshao0622 709ba51612 [WIP]Add VI-LayoutXLM (#2048)
* WIP, add VI-LayoutXLM

* fix pybind

* update the dir of ser_vi_layoutxlm model

* update dir and name of ser_vi_layoutxlm model

* update model name to StructureV2SerViLayoutXLMModel

* fix import paddle bug

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-06-26 16:40:05 +08:00

585 lines
25 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <pybind11/stl.h>
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPPOCRModel(pybind11::module& m) {
m.def("sort_boxes", [](std::vector<std::array<int, 8>>& boxes) {
vision::ocr::SortBoxes(&boxes);
return boxes;
});
// DBDetector
pybind11::class_<vision::ocr::DBDetectorPreprocessor,
vision::ProcessorManager>(m, "DBDetectorPreprocessor")
.def(pybind11::init<>())
.def_property("static_shape_infer",
&vision::ocr::DBDetectorPreprocessor::GetStaticShapeInfer,
&vision::ocr::DBDetectorPreprocessor::SetStaticShapeInfer)
.def_property("max_side_len",
&vision::ocr::DBDetectorPreprocessor::GetMaxSideLen,
&vision::ocr::DBDetectorPreprocessor::SetMaxSideLen)
.def("set_normalize",
[](vision::ocr::DBDetectorPreprocessor& self,
const std::vector<float>& mean, const std::vector<float>& std,
bool is_scale) { self.SetNormalize(mean, std, is_scale); })
.def("run",
[](vision::ocr::DBDetectorPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
self.Run(&images, &outputs);
auto batch_det_img_info = self.GetBatchImgInfo();
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return std::make_pair(outputs, *batch_det_img_info);
})
.def("disable_normalize",
[](vision::ocr::DBDetectorPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute", [](vision::ocr::DBDetectorPreprocessor& self) {
self.DisablePermute();
});
pybind11::class_<vision::ocr::DBDetectorPostprocessor>(
m, "DBDetectorPostprocessor")
.def(pybind11::init<>())
.def_property("det_db_thresh",
&vision::ocr::DBDetectorPostprocessor::GetDetDBThresh,
&vision::ocr::DBDetectorPostprocessor::SetDetDBThresh)
.def_property("det_db_box_thresh",
&vision::ocr::DBDetectorPostprocessor::GetDetDBBoxThresh,
&vision::ocr::DBDetectorPostprocessor::SetDetDBBoxThresh)
.def_property("det_db_unclip_ratio",
&vision::ocr::DBDetectorPostprocessor::GetDetDBUnclipRatio,
&vision::ocr::DBDetectorPostprocessor::SetDetDBUnclipRatio)
.def_property("det_db_score_mode",
&vision::ocr::DBDetectorPostprocessor::GetDetDBScoreMode,
&vision::ocr::DBDetectorPostprocessor::SetDetDBScoreMode)
.def_property("use_dilation",
&vision::ocr::DBDetectorPostprocessor::GetUseDilation,
&vision::ocr::DBDetectorPostprocessor::SetUseDilation)
.def("run",
[](vision::ocr::DBDetectorPostprocessor& self,
std::vector<FDTensor>& inputs,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<std::vector<std::array<int, 8>>> results;
if (!self.Run(inputs, &results, batch_det_img_info)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"DBDetectorPostprocessor.");
}
return results;
})
.def("run",
[](vision::ocr::DBDetectorPostprocessor& self,
std::vector<pybind11::array>& input_array,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<std::vector<std::array<int, 8>>> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results, batch_det_img_info)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"DBDetectorPostprocessor.");
}
return results;
});
pybind11::class_<vision::ocr::DBDetector, FastDeployModel>(m, "DBDetector")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::DBDetector::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::DBDetector::GetPostprocessor)
.def("predict",
[](vision::ocr::DBDetector& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::OCRResult ocr_result;
self.Predict(mat, &ocr_result);
return ocr_result;
})
.def("batch_predict", [](vision::ocr::DBDetector& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::OCRResult> ocr_results;
self.BatchPredict(images, &ocr_results);
return ocr_results;
});
// Classifier
pybind11::class_<vision::ocr::ClassifierPreprocessor,
vision::ProcessorManager>(m, "ClassifierPreprocessor")
.def(pybind11::init<>())
.def_property("cls_image_shape",
&vision::ocr::ClassifierPreprocessor::GetClsImageShape,
&vision::ocr::ClassifierPreprocessor::SetClsImageShape)
.def("set_normalize",
[](vision::ocr::ClassifierPreprocessor& self,
const std::vector<float>& mean, const std::vector<float>& std,
bool is_scale) { self.SetNormalize(mean, std, is_scale); })
.def("run",
[](vision::ocr::ClassifierPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"ClassifierPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return outputs;
})
.def("disable_normalize",
[](vision::ocr::ClassifierPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute", [](vision::ocr::ClassifierPreprocessor& self) {
self.DisablePermute();
});
pybind11::class_<vision::ocr::ClassifierPostprocessor>(
m, "ClassifierPostprocessor")
.def(pybind11::init<>())
.def_property("cls_thresh",
&vision::ocr::ClassifierPostprocessor::GetClsThresh,
&vision::ocr::ClassifierPostprocessor::SetClsThresh)
.def("run",
[](vision::ocr::ClassifierPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<int> cls_labels;
std::vector<float> cls_scores;
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"ClassifierPostprocessor.");
}
return std::make_pair(cls_labels, cls_scores);
})
.def("run", [](vision::ocr::ClassifierPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
std::vector<int> cls_labels;
std::vector<float> cls_scores;
if (!self.Run(inputs, &cls_labels, &cls_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"ClassifierPostprocessor.");
}
return std::make_pair(cls_labels, cls_scores);
});
pybind11::class_<vision::ocr::Classifier, FastDeployModel>(m, "Classifier")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::Classifier::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::Classifier::GetPostprocessor)
.def("predict",
[](vision::ocr::Classifier& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::OCRResult ocr_result;
self.Predict(mat, &ocr_result);
return ocr_result;
})
.def("batch_predict", [](vision::ocr::Classifier& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
vision::OCRResult ocr_result;
self.BatchPredict(images, &ocr_result);
return ocr_result;
});
// Recognizer
pybind11::class_<vision::ocr::RecognizerPreprocessor,
vision::ProcessorManager>(m, "RecognizerPreprocessor")
.def(pybind11::init<>())
.def_property("static_shape_infer",
&vision::ocr::RecognizerPreprocessor::GetStaticShapeInfer,
&vision::ocr::RecognizerPreprocessor::SetStaticShapeInfer)
.def_property("rec_image_shape",
&vision::ocr::RecognizerPreprocessor::GetRecImageShape,
&vision::ocr::RecognizerPreprocessor::SetRecImageShape)
.def("set_normalize",
[](vision::ocr::RecognizerPreprocessor& self,
const std::vector<float>& mean, const std::vector<float>& std,
bool is_scale) { self.SetNormalize(mean, std, is_scale); })
.def("run",
[](vision::ocr::RecognizerPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"RecognizerPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return outputs;
})
.def("disable_normalize",
[](vision::ocr::RecognizerPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute", [](vision::ocr::RecognizerPreprocessor& self) {
self.DisablePermute();
});
pybind11::class_<vision::ocr::RecognizerPostprocessor>(
m, "RecognizerPostprocessor")
.def(pybind11::init<std::string>())
.def("run",
[](vision::ocr::RecognizerPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<std::string> texts;
std::vector<float> rec_scores;
if (!self.Run(inputs, &texts, &rec_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"RecognizerPostprocessor.");
}
return std::make_pair(texts, rec_scores);
})
.def("run", [](vision::ocr::RecognizerPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
std::vector<std::string> texts;
std::vector<float> rec_scores;
if (!self.Run(inputs, &texts, &rec_scores)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"RecognizerPostprocessor.");
}
return std::make_pair(texts, rec_scores);
});
pybind11::class_<vision::ocr::Recognizer, FastDeployModel>(m, "Recognizer")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::Recognizer::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::Recognizer::GetPostprocessor)
.def("clone", [](vision::ocr::Recognizer& self) { return self.Clone(); })
.def("predict",
[](vision::ocr::Recognizer& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::OCRResult ocr_result;
self.Predict(mat, &ocr_result);
return ocr_result;
})
.def("batch_predict", [](vision::ocr::Recognizer& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
vision::OCRResult ocr_result;
self.BatchPredict(images, &ocr_result);
return ocr_result;
});
// Table
pybind11::class_<vision::ocr::StructureV2TablePreprocessor,
vision::ProcessorManager>(m, "StructureV2TablePreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::ocr::StructureV2TablePreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"StructureV2TablePreprocessor.");
}
auto batch_det_img_info = self.GetBatchImgInfo();
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return std::make_pair(outputs, *batch_det_img_info);
});
pybind11::class_<vision::ocr::StructureV2TablePostprocessor>(
m, "StructureV2TablePostprocessor")
.def(pybind11::init<std::string>())
.def("run",
[](vision::ocr::StructureV2TablePostprocessor& self,
std::vector<FDTensor>& inputs,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<std::vector<std::array<int, 8>>> boxes;
std::vector<std::vector<std::string>> structure_list;
if (!self.Run(inputs, &boxes, &structure_list,
batch_det_img_info)) {
throw std::runtime_error(
"Failed to postprocess the input data in "
"StructureV2TablePostprocessor.");
}
return std::make_pair(boxes, structure_list);
})
.def("run",
[](vision::ocr::StructureV2TablePostprocessor& self,
std::vector<pybind11::array>& input_array,
const std::vector<std::array<int, 4>>& batch_det_img_info) {
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
std::vector<std::vector<std::array<int, 8>>> boxes;
std::vector<std::vector<std::string>> structure_list;
if (!self.Run(inputs, &boxes, &structure_list,
batch_det_img_info)) {
throw std::runtime_error(
"Failed to postprocess the input data in "
"StructureV2TablePostprocessor.");
}
return std::make_pair(boxes, structure_list);
});
pybind11::class_<vision::ocr::StructureV2Table, FastDeployModel>(
m, "StructureV2Table")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::StructureV2Table::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::StructureV2Table::GetPostprocessor)
.def("clone",
[](vision::ocr::StructureV2Table& self) { return self.Clone(); })
.def("predict",
[](vision::ocr::StructureV2Table& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::OCRResult ocr_result;
self.Predict(mat, &ocr_result);
return ocr_result;
})
.def("batch_predict", [](vision::ocr::StructureV2Table& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::OCRResult> ocr_results;
self.BatchPredict(images, &ocr_results);
return ocr_results;
});
// Layout
pybind11::class_<vision::ocr::StructureV2LayoutPreprocessor,
vision::ProcessorManager>(m, "StructureV2LayoutPreprocessor")
.def(pybind11::init<>())
.def_property(
"static_shape_infer",
&vision::ocr::StructureV2LayoutPreprocessor::GetStaticShapeInfer,
&vision::ocr::StructureV2LayoutPreprocessor::SetStaticShapeInfer)
.def_property(
"layout_image_shape",
&vision::ocr::StructureV2LayoutPreprocessor::GetLayoutImageShape,
&vision::ocr::StructureV2LayoutPreprocessor::SetLayoutImageShape)
.def("set_normalize",
[](vision::ocr::StructureV2LayoutPreprocessor& self,
const std::vector<float>& mean, const std::vector<float>& std,
bool is_scale) { self.SetNormalize(mean, std, is_scale); })
.def("run",
[](vision::ocr::StructureV2LayoutPreprocessor& self,
std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) {
throw std::runtime_error(
"Failed to preprocess the input data in "
"StructureV2LayoutPreprocessor.");
}
auto batch_layout_img_info = self.GetBatchLayoutImgInfo();
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return std::make_pair(outputs, *batch_layout_img_info);
})
.def("disable_normalize",
[](vision::ocr::StructureV2LayoutPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute",
[](vision::ocr::StructureV2LayoutPreprocessor& self) {
self.DisablePermute();
});
pybind11::class_<vision::ocr::StructureV2LayoutPostprocessor>(
m, "StructureV2LayoutPostprocessor")
.def(pybind11::init<>())
.def_property(
"score_threshold",
&vision::ocr::StructureV2LayoutPostprocessor::GetScoreThreshold,
&vision::ocr::StructureV2LayoutPostprocessor::SetScoreThreshold)
.def_property(
"nms_threshold",
&vision::ocr::StructureV2LayoutPostprocessor::GetNMSThreshold,
&vision::ocr::StructureV2LayoutPostprocessor::SetNMSThreshold)
.def_property("num_class",
&vision::ocr::StructureV2LayoutPostprocessor::GetNumClass,
&vision::ocr::StructureV2LayoutPostprocessor::SetNumClass)
.def_property("fpn_stride",
&vision::ocr::StructureV2LayoutPostprocessor::GetFPNStride,
&vision::ocr::StructureV2LayoutPostprocessor::SetFPNStride)
.def_property("reg_max",
&vision::ocr::StructureV2LayoutPostprocessor::GetRegMax,
&vision::ocr::StructureV2LayoutPostprocessor::SetRegMax)
.def("run",
[](vision::ocr::StructureV2LayoutPostprocessor& self,
std::vector<FDTensor>& inputs,
const std::vector<std::array<int, 4>>& batch_layout_img_info) {
std::vector<vision::DetectionResult> results;
if (!self.Run(inputs, &results, batch_layout_img_info)) {
throw std::runtime_error(
"Failed to postprocess the input data in "
"StructureV2LayoutPostprocessor.");
}
return results;
});
pybind11::class_<vision::ocr::StructureV2Layout, FastDeployModel>(
m, "StructureV2Layout")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def(pybind11::init<>())
.def_property_readonly("preprocessor",
&vision::ocr::StructureV2Layout::GetPreprocessor)
.def_property_readonly("postprocessor",
&vision::ocr::StructureV2Layout::GetPostprocessor)
.def("clone",
[](vision::ocr::StructureV2Layout& self) { return self.Clone(); })
.def("predict",
[](vision::ocr::StructureV2Layout& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult result;
self.Predict(mat, &result);
return result;
})
.def("batch_predict", [](vision::ocr::StructureV2Layout& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::DetectionResult> results;
self.BatchPredict(images, &results);
return results;
});
pybind11::class_<vision::ocr::StructureV2SERViLayoutXLMModel,
FastDeployModel>(m, "StructureV2SERViLayoutXLMModel")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("clone",
[](vision::ocr::StructureV2SERViLayoutXLMModel& self) {
return self.Clone();
})
.def("predict",
[](vision::ocr::StructureV2SERViLayoutXLMModel& self,
pybind11::array& data) {
throw std::runtime_error(
"StructureV2SERViLayoutXLMModel do not support predict.");
})
.def(
"batch_predict",
[](vision::ocr::StructureV2SERViLayoutXLMModel& self,
std::vector<pybind11::array>& data) {
throw std::runtime_error(
"StructureV2SERViLayoutXLMModel do not support batch_predict.");
})
.def("infer",
[](vision::ocr::StructureV2SERViLayoutXLMModel& self,
std::map<std::string, pybind11::array>& data) {
std::vector<FDTensor> inputs(data.size());
int index = 0;
for (auto iter = data.begin(); iter != data.end(); ++iter) {
std::vector<int64_t> data_shape;
data_shape.insert(data_shape.begin(), iter->second.shape(),
iter->second.shape() + iter->second.ndim());
auto dtype = NumpyDataTypeToFDDataType(iter->second.dtype());
inputs[index].Resize(data_shape, dtype);
memcpy(inputs[index].MutableData(), iter->second.mutable_data(),
iter->second.nbytes());
inputs[index].name = iter->first;
index += 1;
}
std::vector<FDTensor> outputs(self.NumOutputsOfRuntime());
self.Infer(inputs, &outputs);
std::vector<pybind11::array> results;
results.reserve(outputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
auto numpy_dtype = FDDataTypeToNumpyDataType(outputs[i].dtype);
results.emplace_back(
pybind11::array(numpy_dtype, outputs[i].shape));
memcpy(results[i].mutable_data(), outputs[i].Data(),
outputs[i].Numel() * FDDataTypeSize(outputs[i].dtype));
}
return results;
})
.def("get_input_info",
[](vision::ocr::StructureV2SERViLayoutXLMModel& self, int& index) {
return self.InputInfoOfRuntime(index);
});
}
} // namespace fastdeploy