Files
FastDeploy/fastdeploy/vision/generation/contrib/animegan_pybind.cc
chenjian 87bcb5df21 [Model] add style transfer model (#922)
* add style transfer model

* add examples for generation model

* add unit test

* add speed comparison

* add speed comparison

* add variable for constant

* add preprocessor and postprocessor

* add preprocessor and postprocessor

* fix

* fix according to review

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-01-03 10:47:08 +08:00

78 lines
3.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindAnimeGAN(pybind11::module& m) {
pybind11::class_<vision::generation::AnimeGAN, FastDeployModel>(m, "AnimeGAN")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::generation::AnimeGAN& self, pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
cv::Mat res;
self.Predict(mat, &res);
auto ret = pybind11::array_t<unsigned char>(
{res.rows, res.cols, res.channels()}, res.data);
return ret;
})
.def("batch_predict",
[](vision::generation::AnimeGAN& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<cv::Mat> results;
self.BatchPredict(images, &results);
std::vector<pybind11::array_t<unsigned char>> ret;
for(size_t i = 0; i < results.size(); ++i){
ret.push_back(pybind11::array_t<unsigned char>(
{results[i].rows, results[i].cols, results[i].channels()}, results[i].data));
}
return ret;
})
.def_property_readonly("preprocessor", &vision::generation::AnimeGAN::GetPreprocessor)
.def_property_readonly("postprocessor", &vision::generation::AnimeGAN::GetPostprocessor);
pybind11::class_<vision::generation::AnimeGANPreprocessor>(
m, "AnimeGANPreprocessor")
.def(pybind11::init<>())
.def("run", [](vision::generation::AnimeGANPreprocessor& self, std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) {
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
}
std::vector<FDTensor> outputs;
if (!self.Run(images, &outputs)) {
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
}
for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing();
}
return outputs;
});
pybind11::class_<vision::generation::AnimeGANPostprocessor>(
m, "AnimeGANPostprocessor")
.def(pybind11::init<>())
.def("run", [](vision::generation::AnimeGANPostprocessor& self, std::vector<FDTensor>& inputs) {
std::vector<cv::Mat> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5Postprocessor.");
}
return results;
});
}
} // namespace fastdeploy