mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-13 20:34:02 +08:00

* add style transfer model * add examples for generation model * add unit test * add speed comparison * add speed comparison * add variable for constant * add preprocessor and postprocessor * add preprocessor and postprocessor * fix * fix according to review Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
78 lines
3.3 KiB
C++
78 lines
3.3 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindAnimeGAN(pybind11::module& m) {
|
|
pybind11::class_<vision::generation::AnimeGAN, FastDeployModel>(m, "AnimeGAN")
|
|
.def(pybind11::init<std::string, std::string, RuntimeOption,
|
|
ModelFormat>())
|
|
.def("predict",
|
|
[](vision::generation::AnimeGAN& self, pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
cv::Mat res;
|
|
self.Predict(mat, &res);
|
|
auto ret = pybind11::array_t<unsigned char>(
|
|
{res.rows, res.cols, res.channels()}, res.data);
|
|
return ret;
|
|
})
|
|
.def("batch_predict",
|
|
[](vision::generation::AnimeGAN& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<cv::Mat> results;
|
|
self.BatchPredict(images, &results);
|
|
std::vector<pybind11::array_t<unsigned char>> ret;
|
|
for(size_t i = 0; i < results.size(); ++i){
|
|
ret.push_back(pybind11::array_t<unsigned char>(
|
|
{results[i].rows, results[i].cols, results[i].channels()}, results[i].data));
|
|
}
|
|
return ret;
|
|
})
|
|
.def_property_readonly("preprocessor", &vision::generation::AnimeGAN::GetPreprocessor)
|
|
.def_property_readonly("postprocessor", &vision::generation::AnimeGAN::GetPostprocessor);
|
|
|
|
pybind11::class_<vision::generation::AnimeGANPreprocessor>(
|
|
m, "AnimeGANPreprocessor")
|
|
.def(pybind11::init<>())
|
|
.def("run", [](vision::generation::AnimeGANPreprocessor& self, std::vector<pybind11::array>& im_list) {
|
|
std::vector<vision::FDMat> images;
|
|
for (size_t i = 0; i < im_list.size(); ++i) {
|
|
images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
|
|
}
|
|
std::vector<FDTensor> outputs;
|
|
if (!self.Run(images, &outputs)) {
|
|
throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
|
|
}
|
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
|
outputs[i].StopSharing();
|
|
}
|
|
return outputs;
|
|
});
|
|
pybind11::class_<vision::generation::AnimeGANPostprocessor>(
|
|
m, "AnimeGANPostprocessor")
|
|
.def(pybind11::init<>())
|
|
.def("run", [](vision::generation::AnimeGANPostprocessor& self, std::vector<FDTensor>& inputs) {
|
|
std::vector<cv::Mat> results;
|
|
if (!self.Run(inputs, &results)) {
|
|
throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5Postprocessor.");
|
|
}
|
|
return results;
|
|
});
|
|
|
|
}
|
|
} // namespace fastdeploy
|