Files
FastDeploy/fastdeploy/vision/facedet/contrib/yolov7face/yolov7face.h
CoolCola 2431890f73 [Model]Fit yolov7face file path (#961)
fit yolov7face file path
2022-12-25 16:30:03 +08:00

82 lines
3.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/facedet/contrib/yolov7face/preprocessor.h"
#include "fastdeploy/vision/facedet/contrib/yolov7face/postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
/*! @brief YOLOv7Face model object used when to load a YOLOv7Face model exported by YOLOv7Face.
*/
class FASTDEPLOY_DECL YOLOv7Face: public FastDeployModel{
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./yolov7face.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
YOLOv7Face(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() {return "yolov7-face";}
/** \brief Predict the detection result for an input image
*
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& im, FaceDetectionResult* result);
/** \brief Predict the detection results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<FaceDetectionResult>* results);
/// Get preprocessor reference of YOLOv7Face
virtual Yolov7FacePreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of YOLOv7Face
virtual Yolov7FacePostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
Yolov7FacePreprocessor preprocessor_;
Yolov7FacePostprocessor postprocessor_;
};
} // namespace facedet
} // namespace vision
} // namespace fastdeploy