Files
FastDeploy/fastdeploy/vision/detection/ppdet/base.h
linyangshi 9164796645 [Model] Support DINO & DETR and add PaddleDetectionModel class (#1837)
* 添加paddleclas模型

* 更新README_CN

* 更新README_CN

* 更新README

* update get_model.sh

* update get_models.sh

* update paddleseg models

* update paddle_seg models

* update paddle_seg models

* modified test resources

* update benchmark_gpu_trt.sh

* add paddle detection

* add paddledetection to benchmark

* modified benchmark cmakelists

* update benchmark scripts

* modified benchmark function calling

* modified paddledetection documents

* add PaddleDetectonModel

* reset examples/paddledetection

* resolve conflict

* update pybind

* resolve conflict

* fix bug

* delete debug mode

* update checkarch log

* update trt inputs example

* Update README.md

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-05-05 14:10:33 +08:00

99 lines
3.9 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/ppdet/preprocessor.h"
#include "fastdeploy/vision/detection/ppdet/postprocessor.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
/** \brief All object detection model APIs are defined inside this namespace
*
*/
namespace detection {
/*! @brief Base model object used when to load a model exported by PaddleDetection
*/
class FASTDEPLOY_DECL PPDetBase : public FastDeployModel {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ppyoloe/model.pdmodel
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
PPDetBase(const std::string& model_file, const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/** \brief Clone a new PaddleDetModel with less memory usage when multiple instances of the same model are created
*
* \return new PaddleDetModel* type unique pointer
*/
virtual std::unique_ptr<PPDetBase> Clone() const;
/// Get model's name
virtual std::string ModelName() const { return "PaddleDetection/BaseModel"; }
/** \brief DEPRECATED Predict the detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, DetectionResult* result);
/** \brief Predict the detection result for an input image
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& im, DetectionResult* result);
/** \brief Predict the detection result for an input image list
* \param[in] im The input image list, all the elements come from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
PaddleDetPreprocessor& GetPreprocessor() {
return preprocessor_;
}
PaddleDetPostprocessor& GetPostprocessor() {
return postprocessor_;
}
virtual bool CheckArch();
protected:
virtual bool Initialize();
PaddleDetPreprocessor preprocessor_;
PaddleDetPostprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy