Files
FastDeploy/fastdeploy/vision/detection/contrib/rknpu2/model.h
Zheng-Bicheng 109d1046ae [Model] add function for setting anchor rknpu2 (#1728)
* add function for setting anchor rknpu2
add more demo for rknpu2
fixed md error

* Update config.h

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-04 20:33:06 +08:00

99 lines
4.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/detection/contrib/rknpu2/rkyolo.h"
namespace fastdeploy {
namespace vision {
namespace detection {
class FASTDEPLOY_DECL RKYOLOV5 : public RKYOLO {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g picodet/model.pdmodel
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
RKYOLOV5(const std::string& model_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::RKNN)
: RKYOLO(model_file, custom_option, model_format) {
valid_cpu_backends = {};
valid_gpu_backends = {};
valid_rknpu_backends = {Backend::RKNPU2};
std::vector<int> anchors = {10, 13, 16, 30, 33, 23, 30, 61, 62,
45, 59, 119, 116, 90, 156, 198, 373, 326};
int anchor_per_branch_ = 3;
GetPostprocessor().SetAnchor(anchors);
GetPostprocessor().SetAnchorPerBranch(anchor_per_branch_);
}
virtual std::string ModelName() const { return "RKYOLOV5"; }
};
class FASTDEPLOY_DECL RKYOLOV7 : public RKYOLO {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g picodet/model.pdmodel
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
RKYOLOV7(const std::string& model_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::RKNN)
: RKYOLO(model_file, custom_option, model_format) {
valid_cpu_backends = {};
valid_gpu_backends = {};
valid_rknpu_backends = {Backend::RKNPU2};
std::vector<int> anchors = {12, 16, 19, 36, 40, 28, 36, 75, 76,
55, 72, 146, 142, 110, 192, 243, 459, 401};
int anchor_per_branch_ = 3;
GetPostprocessor().SetAnchor(anchors);
GetPostprocessor().SetAnchorPerBranch(anchor_per_branch_);
}
virtual std::string ModelName() const { return "RKYOLOV7"; }
};
class FASTDEPLOY_DECL RKYOLOX : public RKYOLO {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g picodet/model.pdmodel
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
RKYOLOX(const std::string& model_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::RKNN)
: RKYOLO(model_file, custom_option, model_format) {
valid_cpu_backends = {};
valid_gpu_backends = {};
valid_rknpu_backends = {Backend::RKNPU2};
std::vector<int> anchors = {1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1};
int anchor_per_branch_ = 1;
GetPostprocessor().SetAnchor(anchors);
GetPostprocessor().SetAnchorPerBranch(anchor_per_branch_);
}
virtual std::string ModelName() const { return "RKYOLOV7"; }
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy