Files
FastDeploy/fastdeploy/vision/classification/ppshitu/ppshituv2_rec.h
DefTruth 77cb9db6da [Model] Support PP-ShiTuV2 models for PaddleClas (#1900)
* [cmake] add faiss.cmake -> pp-shituv2

* [PP-ShiTuV2] Support PP-ShituV2-Det model

* [PP-ShiTuV2] Support PP-ShiTuV2-Det model

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support

* [Bug Fix] fix ppshitu_pybind error

* [benchmark] Add ppshituv2-det c++ benchmark

* [examples] Add PP-ShiTuV2 det & rec examples

* [vision] Update vision classification result

* [Bug Fix] fix trt shapes setting errors
2023-05-08 14:04:09 +08:00

111 lines
4.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/classification/ppshitu/ppshituv2_rec_preprocessor.h"
#include "fastdeploy/vision/classification/ppshitu/ppshituv2_rec_postprocessor.h"
namespace fastdeploy {
namespace vision {
namespace classification {
/*! @brief PPShiTuV2Recognizer model object used when to load a PPShiTuV2Recognizer model exported by PP-ShiTuV2 Rec model.
*/
class FASTDEPLOY_DECL PPShiTuV2Recognizer : public FastDeployModel {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g PPLCNet/inference.pdmodel
* \param[in] params_file Path of parameter file, e.g PPLCNet/inference.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g PPLCNet/inference_cls.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
PPShiTuV2Recognizer(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/** \brief Clone a new PPShiTuV2Recognizer with less memory usage when multiple instances of the same model are created
*
* \return new PPShiTuV2Recognizer* type unique pointer
*/
virtual std::unique_ptr<PPShiTuV2Recognizer> Clone() const;
/// Get model's name
virtual std::string ModelName() const { return "PPShiTuV2Recognizer"; }
/** \brief DEPRECATED Predict the feature vector result for an input image, remove at 1.0 version
*
* \param[in] im The input image data, comes from cv::imread()
* \param[in] result The output feature vector result will be writen to this structure
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, ClassifyResult* result);
/** \brief Predict the classification result for an input image
*
* \param[in] img The input image data, comes from cv::imread()
* \param[in] result The output feature vector result
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& img, ClassifyResult* result);
/** \brief Predict the feature vector results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output feature vector(namely ClassifyResult.feature) result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<ClassifyResult>* results);
/** \brief Predict the feature vector result for an input image
*
* \param[in] mat The input mat
* \param[in] result The output feature vector result
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const FDMat& mat, ClassifyResult* result);
/** \brief Predict the feature vector results for a batch of input images
*
* \param[in] mats, The input mat list
* \param[in] results The output feature vector result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<FDMat>& mats,
std::vector<ClassifyResult>* results);
/// Get preprocessor reference of PPShiTuV2Recognizer
virtual PPShiTuV2RecognizerPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of PPShiTuV2Recognizer
virtual PPShiTuV2RecognizerPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
PPShiTuV2RecognizerPreprocessor preprocessor_;
PPShiTuV2RecognizerPostprocessor postprocessor_;
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy