mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-14 04:44:00 +08:00

* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
111 lines
4.7 KiB
C++
111 lines
4.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/classification/ppshitu/ppshituv2_rec_preprocessor.h"
|
|
#include "fastdeploy/vision/classification/ppshitu/ppshituv2_rec_postprocessor.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
/*! @brief PPShiTuV2Recognizer model object used when to load a PPShiTuV2Recognizer model exported by PP-ShiTuV2 Rec model.
|
|
*/
|
|
class FASTDEPLOY_DECL PPShiTuV2Recognizer : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and configuration file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g PPLCNet/inference.pdmodel
|
|
* \param[in] params_file Path of parameter file, e.g PPLCNet/inference.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] config_file Path of configuration file for deployment, e.g PPLCNet/inference_cls.yml
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format
|
|
*/
|
|
PPShiTuV2Recognizer(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
|
|
/** \brief Clone a new PPShiTuV2Recognizer with less memory usage when multiple instances of the same model are created
|
|
*
|
|
* \return new PPShiTuV2Recognizer* type unique pointer
|
|
*/
|
|
virtual std::unique_ptr<PPShiTuV2Recognizer> Clone() const;
|
|
|
|
/// Get model's name
|
|
virtual std::string ModelName() const { return "PPShiTuV2Recognizer"; }
|
|
|
|
/** \brief DEPRECATED Predict the feature vector result for an input image, remove at 1.0 version
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread()
|
|
* \param[in] result The output feature vector result will be writen to this structure
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(cv::Mat* im, ClassifyResult* result);
|
|
|
|
/** \brief Predict the classification result for an input image
|
|
*
|
|
* \param[in] img The input image data, comes from cv::imread()
|
|
* \param[in] result The output feature vector result
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(const cv::Mat& img, ClassifyResult* result);
|
|
|
|
/** \brief Predict the feature vector results for a batch of input images
|
|
*
|
|
* \param[in] imgs, The input image list, each element comes from cv::imread()
|
|
* \param[in] results The output feature vector(namely ClassifyResult.feature) result list
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
|
|
std::vector<ClassifyResult>* results);
|
|
|
|
/** \brief Predict the feature vector result for an input image
|
|
*
|
|
* \param[in] mat The input mat
|
|
* \param[in] result The output feature vector result
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(const FDMat& mat, ClassifyResult* result);
|
|
|
|
/** \brief Predict the feature vector results for a batch of input images
|
|
*
|
|
* \param[in] mats, The input mat list
|
|
* \param[in] results The output feature vector result list
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<FDMat>& mats,
|
|
std::vector<ClassifyResult>* results);
|
|
|
|
/// Get preprocessor reference of PPShiTuV2Recognizer
|
|
virtual PPShiTuV2RecognizerPreprocessor& GetPreprocessor() {
|
|
return preprocessor_;
|
|
}
|
|
|
|
/// Get postprocessor reference of PPShiTuV2Recognizer
|
|
virtual PPShiTuV2RecognizerPostprocessor& GetPostprocessor() {
|
|
return postprocessor_;
|
|
}
|
|
|
|
protected:
|
|
bool Initialize();
|
|
PPShiTuV2RecognizerPreprocessor preprocessor_;
|
|
PPShiTuV2RecognizerPostprocessor postprocessor_;
|
|
};
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|