Files
FastDeploy/fastdeploy/runtime/backends/paddle/ops/centerpoint_postprocess_op.cc

123 lines
4.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#if defined(WITH_GPU)
#include <cuda.h>
#include <cuda_runtime_api.h>
#if defined(PADDLEINFERENCE_API_COMPAT_2_4_x)
#include "paddle/include/experimental/ext_all.h"
#elif defined(PADDLEINFERENCE_API_COMPAT_2_5_x)
#include "paddle/include/paddle/extension.h"
#else
#include "paddle/extension.h"
#endif
namespace fastdeploy {
namespace paddle_custom_ops {
std::vector<paddle::Tensor> postprocess_gpu(
const std::vector<paddle::Tensor> &hm,
const std::vector<paddle::Tensor> &reg,
const std::vector<paddle::Tensor> &height,
const std::vector<paddle::Tensor> &dim,
const std::vector<paddle::Tensor> &vel,
const std::vector<paddle::Tensor> &rot,
const std::vector<float> &voxel_size,
const std::vector<float> &point_cloud_range,
const std::vector<float> &post_center_range,
const std::vector<int> &num_classes, const int down_ratio,
const float score_threshold, const float nms_iou_threshold,
const int nms_pre_max_size, const int nms_post_max_size,
const bool with_velocity);
std::vector<paddle::Tensor> centerpoint_postprocess(
const std::vector<paddle::Tensor> &hm,
const std::vector<paddle::Tensor> &reg,
const std::vector<paddle::Tensor> &height,
const std::vector<paddle::Tensor> &dim,
const std::vector<paddle::Tensor> &vel,
const std::vector<paddle::Tensor> &rot,
const std::vector<float> &voxel_size,
const std::vector<float> &point_cloud_range,
const std::vector<float> &post_center_range,
const std::vector<int> &num_classes, const int down_ratio,
const float score_threshold, const float nms_iou_threshold,
const int nms_pre_max_size, const int nms_post_max_size,
const bool with_velocity) {
if (hm[0].is_gpu()) {
return postprocess_gpu(hm, reg, height, dim, vel, rot, voxel_size,
point_cloud_range, post_center_range, num_classes,
down_ratio, score_threshold, nms_iou_threshold,
nms_pre_max_size, nms_post_max_size, with_velocity);
} else {
PD_THROW(
"Unsupported device type for centerpoint postprocess "
"operator.");
}
}
std::vector<std::vector<int64_t>> PostProcessInferShape(
const std::vector<std::vector<int64_t>> &hm_shape,
const std::vector<std::vector<int64_t>> &reg_shape,
const std::vector<std::vector<int64_t>> &height_shape,
const std::vector<std::vector<int64_t>> &dim_shape,
const std::vector<std::vector<int64_t>> &vel_shape,
const std::vector<std::vector<int64_t>> &rot_shape,
const std::vector<float> &voxel_size,
const std::vector<float> &point_cloud_range,
const std::vector<float> &post_center_range,
const std::vector<int> &num_classes, const int down_ratio,
const float score_threshold, const float nms_iou_threshold,
const int nms_pre_max_size, const int nms_post_max_size,
const bool with_velocity) {
if (with_velocity) {
return {{-1, 9}, {-1}, {-1}};
} else {
return {{-1, 7}, {-1}, {-1}};
}
}
std::vector<paddle::DataType> PostProcessInferDtype(
const std::vector<paddle::DataType> &hm_dtype,
const std::vector<paddle::DataType> &reg_dtype,
const std::vector<paddle::DataType> &height_dtype,
const std::vector<paddle::DataType> &dim_dtype,
const std::vector<paddle::DataType> &vel_dtype,
const std::vector<paddle::DataType> &rot_dtype) {
return {reg_dtype[0], hm_dtype[0], paddle::DataType::INT64};
}
} // namespace fastdeploy
} // namespace paddle_custom_ops
PD_BUILD_OP(centerpoint_postprocess)
.Inputs({paddle::Vec("HM"), paddle::Vec("REG"), paddle::Vec("HEIGHT"),
paddle::Vec("DIM"), paddle::Vec("VEL"), paddle::Vec("ROT")})
.Outputs({"BBOXES", "SCORES", "LABELS"})
.SetKernelFn(PD_KERNEL(fastdeploy::paddle_custom_ops::centerpoint_postprocess))
.Attrs({"voxel_size: std::vector<float>",
"point_cloud_range: std::vector<float>",
"post_center_range: std::vector<float>",
"num_classes: std::vector<int>", "down_ratio: int",
"score_threshold: float", "nms_iou_threshold: float",
"nms_pre_max_size: int", "nms_post_max_size: int",
"with_velocity: bool"})
.SetInferShapeFn(PD_INFER_SHAPE(fastdeploy::paddle_custom_ops::PostProcessInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(fastdeploy::paddle_custom_ops::PostProcessInferDtype));
#endif // WITH_GPU