Files
FastDeploy/examples/vision/classification/paddleclas/serving/models/runtime/config.pbtxt
DefTruth 434b48dda5 [Serving] Support FastDeploy XPU Triton Server (#1994)
* [patchelf] fix patchelf error for inference xpu

* [serving] add xpu dockerfile and support fd server

* [serving] add xpu dockerfile and support fd server

* [Serving] support XPU + Tritron

* [Serving] support XPU + Tritron

* [Dockerfile] update xpu tritron docker file -> paddle 0.0.0

* [Dockerfile] update xpu tritron docker file -> paddle 0.0.0

* [Dockerfile] update xpu tritron docker file -> paddle 0.0.0

* [Dockerfile] add comments for xpu tritron dockerfile

* [Doruntime] fix xpu infer error

* [Doruntime] fix xpu infer error

* [XPU] update xpu dockerfile

* add xpu triton server docs

* add xpu triton server docs

* add xpu triton server docs

* add xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs

* update xpu triton server docs
2023-05-29 14:38:25 +08:00

90 lines
2.3 KiB
Plaintext

# optional, If name is specified it must match the name of the model repository directory containing the model.
name: "runtime"
backend: "fastdeploy"
max_batch_size: 16
# Input configuration of the model
input [
{
# input name
name: "inputs"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape, The batch dimension is omitted and the actual shape is [batch, c, h, w]
dims: [ 3, 224, 224 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "save_infer_model/scale_0.tmp_1"
data_type: TYPE_FP32
dims: [ 1000 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# kind: KIND_CPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use TRT engine
name: "tensorrt",
# use fp16 on TRT engine
parameters { key: "precision" value: "trt_fp16" }
},
{
name: "min_shape"
parameters { key: "inputs" value: "1 3 224 224" }
},
{
name: "opt_shape"
parameters { key: "inputs" value: "1 3 224 224" }
},
{
name: "max_shape"
parameters { key: "inputs" value: "16 3 224 224" }
}
]
}}
# instance_group [
# {
# # The number of instances is 1
# count: 1
# # Use GPU, CPU inference option is:KIND_CPU
# # kind: KIND_GPU
# kind: KIND_CPU
# # The instance is deployed on the 0th GPU card
# # gpus: [0]
# }
# ]
# optimization {
# execution_accelerators {
# cpu_execution_accelerator: [{
# name: "paddle_xpu",
# parameters { key: "cpu_threads" value: "4" }
# parameters { key: "use_paddle_log" value: "1" }
# parameters { key: "kunlunxin_id" value: "0" }
# parameters { key: "l3_workspace_size" value: "62914560" }
# parameters { key: "locked" value: "0" }
# parameters { key: "autotune" value: "1" }
# parameters { key: "precision" value: "int16" }
# parameters { key: "adaptive_seqlen" value: "0" }
# parameters { key: "enable_multi_stream" value: "0" }
# parameters { key: "gm_default_size" value: "0" }
# }]
# }}