Files
FastDeploy/benchmark/cpp/flags.h
WJJ1995 721e6efb81 [Benchmark] Add ClassifyDiff to compare ClassifyResult diff (#1381)
* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

* add cpp benchmark

* add cpu and gpu mem

* public part split

* add runtime mode

* fixed bugs

* add cpu_thread_nums

* deal with comments

* deal with comments

* deal with comments

* rm useless code

* add FASTDEPLOY_DECL

* add FASTDEPLOY_DECL

* fixed for windows

* mv rss to pss

* mv rss to pss

* Update utils.cc

* use thread to collect mem

* Add ResourceUsageMonitor

* rm useless code

* fixed bug

* fixed typo

* update ResourceUsageMonitor

* fixed bug

* fixed bug

* add note for ResourceUsageMonitor

* deal with comments

* add macros

* deal with comments

* deal with comments

* deal with comments

* re-lint

* rm pmap and use mem api

* rm pmap and use mem api

* add mem api

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* deal with comments

* fixed enable_paddle_to_trt

* add log for paddle_trt

* support ppcls benchmark

* use new trt option api

* update benchmark info

* simplify benchmark.cc

* simplify benchmark.cc

* deal with comments

* Add ppseg && ppocr benchmark

* add OCR rec img

* add ocr benchmark

* fixed trt shape

* add trt shape

* resolve conflict

* add ENABLE_BENCHMARK define

* Add ClassifyDiff

* Add Resize for ClassifyResult

* deal with comments

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-02-21 18:01:13 +08:00

98 lines
3.7 KiB
C++
Executable File

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "gflags/gflags.h"
#include "fastdeploy/benchmark/utils.h"
#ifdef WIN32
static const char sep = '\\';
#else
static const char sep = '/';
#endif
DEFINE_string(model, "", "Directory of the inference model.");
DEFINE_string(image, "", "Path of the image file.");
DEFINE_string(device, "cpu",
"Type of inference device, support 'cpu/gpu/xpu'.");
DEFINE_int32(device_id, 0, "device(gpu/xpu/...) id.");
DEFINE_int32(warmup, 200, "Number of warmup for profiling.");
DEFINE_int32(repeat, 1000, "Number of repeats for profiling.");
DEFINE_string(profile_mode, "runtime", "runtime or end2end.");
DEFINE_string(backend, "default",
"The inference runtime backend, support: ['default', 'ort', "
"'paddle', 'ov', 'trt', 'paddle_trt', 'lite']");
DEFINE_int32(cpu_thread_nums, 8, "Set numbers of cpu thread.");
DEFINE_bool(
include_h2d_d2h, false, "Whether run profiling with h2d and d2h.");
DEFINE_bool(
use_fp16, false,
"Whether to use FP16 mode, only support 'trt', 'paddle_trt' "
"and 'lite' backend");
DEFINE_bool(
collect_memory_info, false, "Whether to collect memory info");
DEFINE_int32(sampling_interval, 50, "How often to collect memory info(ms).");
static void PrintUsage() {
std::cout << "Usage: infer_demo --model model_path --image img_path --device "
"[cpu|gpu|xpu] --backend "
"[default|ort|paddle|ov|trt|paddle_trt|lite] "
"--use_fp16 false"
<< std::endl;
std::cout << "Default value of device: cpu" << std::endl;
std::cout << "Default value of backend: default" << std::endl;
std::cout << "Default value of use_fp16: false" << std::endl;
}
static void PrintBenchmarkInfo() {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Get model name
std::vector<std::string> model_names;
fastdeploy::benchmark::Split(FLAGS_model, model_names, sep);
if (model_names.empty()) {
std::cout << "Directory of the inference model is invalid!!!" << std::endl;
return;
}
// Save benchmark info
std::stringstream ss;
ss.precision(3);
ss << "\n======= Model Info =======\n";
ss << "model_name: " << model_names[model_names.size() - 1] << std::endl;
ss << "profile_mode: " << FLAGS_profile_mode << std::endl;
if (FLAGS_profile_mode == "runtime") {
ss << "include_h2d_d2h: " << FLAGS_include_h2d_d2h << std::endl;
}
ss << "\n======= Backend Info =======\n";
ss << "warmup: " << FLAGS_warmup << std::endl;
ss << "repeats: " << FLAGS_repeat << std::endl;
ss << "device: " << FLAGS_device << std::endl;
if (FLAGS_device == "gpu") {
ss << "device_id: " << FLAGS_device_id << std::endl;
}
ss << "backend: " << FLAGS_backend << std::endl;
if (FLAGS_device == "cpu") {
ss << "cpu_thread_nums: " << FLAGS_cpu_thread_nums << std::endl;
}
ss << "use_fp16: " << FLAGS_use_fp16 << std::endl;
ss << "collect_memory_info: " << FLAGS_collect_memory_info << std::endl;
if (FLAGS_collect_memory_info) {
ss << "sampling_interval: " << std::to_string(FLAGS_sampling_interval)
<< "ms" << std::endl;
}
std::cout << ss.str() << std::endl;
#endif
return;
}