Files
FastDeploy/benchmark/cpp/benchmark_ppocr.cc
WJJ1995 721e6efb81 [Benchmark] Add ClassifyDiff to compare ClassifyResult diff (#1381)
* add GPL lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* add GPL-3.0 lisence

* support yolov8

* add pybind for yolov8

* add yolov8 readme

* add cpp benchmark

* add cpu and gpu mem

* public part split

* add runtime mode

* fixed bugs

* add cpu_thread_nums

* deal with comments

* deal with comments

* deal with comments

* rm useless code

* add FASTDEPLOY_DECL

* add FASTDEPLOY_DECL

* fixed for windows

* mv rss to pss

* mv rss to pss

* Update utils.cc

* use thread to collect mem

* Add ResourceUsageMonitor

* rm useless code

* fixed bug

* fixed typo

* update ResourceUsageMonitor

* fixed bug

* fixed bug

* add note for ResourceUsageMonitor

* deal with comments

* add macros

* deal with comments

* deal with comments

* deal with comments

* re-lint

* rm pmap and use mem api

* rm pmap and use mem api

* add mem api

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* Add PrintBenchmarkInfo func

* deal with comments

* fixed enable_paddle_to_trt

* add log for paddle_trt

* support ppcls benchmark

* use new trt option api

* update benchmark info

* simplify benchmark.cc

* simplify benchmark.cc

* deal with comments

* Add ppseg && ppocr benchmark

* add OCR rec img

* add ocr benchmark

* fixed trt shape

* add trt shape

* resolve conflict

* add ENABLE_BENCHMARK define

* Add ClassifyDiff

* Add Resize for ClassifyResult

* deal with comments

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-02-21 18:01:13 +08:00

97 lines
4.0 KiB
C++
Executable File

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
// Only for ppocr
DEFINE_string(det_model, "", "Path of Detection model of PPOCR.");
DEFINE_string(cls_model, "", "Path of Classification model of PPOCR.");
DEFINE_string(rec_model, "", "Path of Recognization model of PPOCR.");
DEFINE_string(rec_label_file, "", "Path of Recognization label file of PPOCR.");
DEFINE_string(image_rec, "", "Path of Recognization img file of PPOCR.");
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
auto im_rec = cv::imread(FLAGS_image_rec);
// Detection Model
auto det_model_file =
FLAGS_model + sep + FLAGS_det_model + sep + "inference.pdmodel";
auto det_params_file =
FLAGS_model + sep + FLAGS_det_model + sep + "inference.pdiparams";
// Classification Model
auto cls_model_file =
FLAGS_model + sep + FLAGS_cls_model + sep + "inference.pdmodel";
auto cls_params_file =
FLAGS_model + sep + FLAGS_cls_model + sep + "inference.pdiparams";
// Recognition Model
auto rec_model_file =
FLAGS_model + sep + FLAGS_rec_model + sep + "inference.pdmodel";
auto rec_params_file =
FLAGS_model + sep + FLAGS_rec_model + sep + "inference.pdiparams";
auto rec_label_file = FLAGS_rec_label_file;
if (FLAGS_backend == "paddle_trt") {
option.paddle_infer_option.collect_trt_shape = true;
}
auto det_option = option;
auto cls_option = option;
auto rec_option = option;
if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") {
det_option.trt_option.SetShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
{1, 3, 960, 960});
cls_option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320},
{8, 3, 48, 1024});
rec_option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320},
{8, 3, 48, 2304});
}
auto det_model = fastdeploy::vision::ocr::DBDetector(
det_model_file, det_params_file, det_option);
auto cls_model = fastdeploy::vision::ocr::Classifier(
cls_model_file, cls_params_file, cls_option);
auto rec_model = fastdeploy::vision::ocr::Recognizer(
rec_model_file, rec_params_file, rec_label_file, rec_option);
// Only for runtime
if (FLAGS_profile_mode == "runtime") {
std::vector<std::array<int, 8>> boxes_result;
std::cout << "====Detection model====" << std::endl;
BENCHMARK_MODEL(det_model, det_model.Predict(im, &boxes_result));
int32_t cls_label;
float cls_score;
std::cout << "====Classification model====" << std::endl;
BENCHMARK_MODEL(cls_model,
cls_model.Predict(im_rec, &cls_label, &cls_score));
std::string text;
float rec_score;
std::cout << "====Recognization model====" << std::endl;
BENCHMARK_MODEL(rec_model, rec_model.Predict(im_rec, &text, &rec_score));
}
auto model_ppocrv3 =
fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
fastdeploy::vision::OCRResult res;
if (FLAGS_profile_mode == "end2end") {
BENCHMARK_MODEL(model_ppocrv3, model_ppocrv3.Predict(im, &res))
}
auto vis_im = fastdeploy::vision::VisOcr(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0;
}