mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* add GPL lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * add GPL-3.0 lisence * support yolov8 * add pybind for yolov8 * add yolov8 readme * add cpp benchmark * add cpu and gpu mem * public part split * add runtime mode * fixed bugs * add cpu_thread_nums * deal with comments * deal with comments * deal with comments * rm useless code * add FASTDEPLOY_DECL * add FASTDEPLOY_DECL * fixed for windows * mv rss to pss * mv rss to pss * Update utils.cc * use thread to collect mem * Add ResourceUsageMonitor * rm useless code * fixed bug * fixed typo * update ResourceUsageMonitor * fixed bug * fixed bug * add note for ResourceUsageMonitor * deal with comments * add macros * deal with comments * deal with comments * deal with comments * re-lint * rm pmap and use mem api * rm pmap and use mem api * add mem api * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * Add PrintBenchmarkInfo func * deal with comments * fixed enable_paddle_to_trt * add log for paddle_trt * support ppcls benchmark * use new trt option api * update benchmark info * simplify benchmark.cc * simplify benchmark.cc * deal with comments * Add ppseg && ppocr benchmark * add OCR rec img * add ocr benchmark * fixed trt shape * add trt shape * resolve conflict * add ENABLE_BENCHMARK define * Add ClassifyDiff * Add Resize for ClassifyResult * deal with comments --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
97 lines
4.0 KiB
C++
Executable File
97 lines
4.0 KiB
C++
Executable File
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "flags.h"
|
|
#include "macros.h"
|
|
#include "option.h"
|
|
|
|
// Only for ppocr
|
|
DEFINE_string(det_model, "", "Path of Detection model of PPOCR.");
|
|
DEFINE_string(cls_model, "", "Path of Classification model of PPOCR.");
|
|
DEFINE_string(rec_model, "", "Path of Recognization model of PPOCR.");
|
|
DEFINE_string(rec_label_file, "", "Path of Recognization label file of PPOCR.");
|
|
DEFINE_string(image_rec, "", "Path of Recognization img file of PPOCR.");
|
|
|
|
int main(int argc, char* argv[]) {
|
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
|
// Initialization
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (!CreateRuntimeOption(&option, argc, argv, true)) {
|
|
return -1;
|
|
}
|
|
auto im = cv::imread(FLAGS_image);
|
|
auto im_rec = cv::imread(FLAGS_image_rec);
|
|
// Detection Model
|
|
auto det_model_file =
|
|
FLAGS_model + sep + FLAGS_det_model + sep + "inference.pdmodel";
|
|
auto det_params_file =
|
|
FLAGS_model + sep + FLAGS_det_model + sep + "inference.pdiparams";
|
|
// Classification Model
|
|
auto cls_model_file =
|
|
FLAGS_model + sep + FLAGS_cls_model + sep + "inference.pdmodel";
|
|
auto cls_params_file =
|
|
FLAGS_model + sep + FLAGS_cls_model + sep + "inference.pdiparams";
|
|
// Recognition Model
|
|
auto rec_model_file =
|
|
FLAGS_model + sep + FLAGS_rec_model + sep + "inference.pdmodel";
|
|
auto rec_params_file =
|
|
FLAGS_model + sep + FLAGS_rec_model + sep + "inference.pdiparams";
|
|
auto rec_label_file = FLAGS_rec_label_file;
|
|
if (FLAGS_backend == "paddle_trt") {
|
|
option.paddle_infer_option.collect_trt_shape = true;
|
|
}
|
|
auto det_option = option;
|
|
auto cls_option = option;
|
|
auto rec_option = option;
|
|
if (FLAGS_backend == "paddle_trt" || FLAGS_backend == "trt") {
|
|
det_option.trt_option.SetShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
|
|
{1, 3, 960, 960});
|
|
cls_option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320},
|
|
{8, 3, 48, 1024});
|
|
rec_option.trt_option.SetShape("x", {1, 3, 48, 10}, {4, 3, 48, 320},
|
|
{8, 3, 48, 2304});
|
|
}
|
|
auto det_model = fastdeploy::vision::ocr::DBDetector(
|
|
det_model_file, det_params_file, det_option);
|
|
auto cls_model = fastdeploy::vision::ocr::Classifier(
|
|
cls_model_file, cls_params_file, cls_option);
|
|
auto rec_model = fastdeploy::vision::ocr::Recognizer(
|
|
rec_model_file, rec_params_file, rec_label_file, rec_option);
|
|
// Only for runtime
|
|
if (FLAGS_profile_mode == "runtime") {
|
|
std::vector<std::array<int, 8>> boxes_result;
|
|
std::cout << "====Detection model====" << std::endl;
|
|
BENCHMARK_MODEL(det_model, det_model.Predict(im, &boxes_result));
|
|
int32_t cls_label;
|
|
float cls_score;
|
|
std::cout << "====Classification model====" << std::endl;
|
|
BENCHMARK_MODEL(cls_model,
|
|
cls_model.Predict(im_rec, &cls_label, &cls_score));
|
|
std::string text;
|
|
float rec_score;
|
|
std::cout << "====Recognization model====" << std::endl;
|
|
BENCHMARK_MODEL(rec_model, rec_model.Predict(im_rec, &text, &rec_score));
|
|
}
|
|
auto model_ppocrv3 =
|
|
fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);
|
|
fastdeploy::vision::OCRResult res;
|
|
if (FLAGS_profile_mode == "end2end") {
|
|
BENCHMARK_MODEL(model_ppocrv3, model_ppocrv3.Predict(im, &res))
|
|
}
|
|
auto vis_im = fastdeploy::vision::VisOcr(im, res);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
#endif
|
|
return 0;
|
|
} |