mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 d33105baeb
			
		
	
	d33105baeb
	
	
	
		
			
			* online chat support logprobs * check xpu * check vl_gpu_model_runner and xpu_model_runner * get_worker() check platform
		
			
				
	
	
		
			149 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <sys/ipc.h>
 | |
| #include <sys/msg.h>
 | |
| #include <sys/types.h>
 | |
| #include "paddle/extension.h"
 | |
| 
 | |
| #ifndef PD_BUILD_STATIC_OP
 | |
| #define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
 | |
| #endif
 | |
| 
 | |
| #define MAX_BSZ 512
 | |
| #define K 20
 | |
| // #define SAVE_WITH_OUTPUT_DEBUG
 | |
| 
 | |
| struct msgdata {
 | |
|     long mtype;
 | |
|     int mtext[MAX_BSZ * (K + 1) + 2];  // stop_flag, bsz, tokens
 | |
|     float mtext_f[MAX_BSZ * (K + 1)];  // score
 | |
|     int mtext_ranks[MAX_BSZ];  // ranks
 | |
| };
 | |
| 
 | |
| void SaveOutMmsgTopK(const paddle::Tensor& x,
 | |
|                      const paddle::Tensor& logprob_token_ids,     // [bsz, k+1]
 | |
|                      const paddle::Tensor& logprob_scores,  // [bsz, k+1]
 | |
|                      const paddle::Tensor& ranks,
 | |
|                      const paddle::Tensor& not_need_stop,
 | |
|                      int64_t rank_id) {
 | |
|     if (rank_id > 0) {
 | |
|         return;
 | |
|     }
 | |
|     auto x_cpu = x.copy_to(paddle::CPUPlace(), false);
 | |
|     auto logprob_token_ids_cpu = logprob_token_ids.copy_to(paddle::CPUPlace(), false);
 | |
|     auto logprob_scores_cpu = logprob_scores.copy_to(paddle::CPUPlace(), false);
 | |
|     auto ranks_cpu = ranks.copy_to(paddle::CPUPlace(), false);
 | |
|     int64_t* x_data = x_cpu.data<int64_t>();
 | |
|     int64_t* logprob_token_ids_data = logprob_token_ids_cpu.data<int64_t>();
 | |
|     float* logprob_scores_data = logprob_scores_cpu.data<float>();
 | |
|     int64_t* ranks_data = ranks_cpu.data<int64_t>();
 | |
|     static struct msgdata msg_sed;
 | |
|     int msg_queue_id = 1;
 | |
|     if (const char* inference_msg_queue_id_env_p =
 | |
|             std::getenv("INFERENCE_MSG_QUEUE_ID")) {
 | |
|         std::string inference_msg_queue_id_env_str(
 | |
|             inference_msg_queue_id_env_p);
 | |
|         int inference_msg_queue_id_from_env =
 | |
|             std::stoi(inference_msg_queue_id_env_str);
 | |
|         msg_queue_id = inference_msg_queue_id_from_env;
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout << "Your INFERENCE_MSG_QUEUE_ID is: "
 | |
|                   << inference_msg_queue_id_from_env << std::endl;
 | |
| #endif
 | |
|     } else {
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout << "Failed to got INFERENCE_MSG_QUEUE_ID at env, use default."
 | |
|                   << std::endl;
 | |
| #endif
 | |
|     }
 | |
|     int inference_msg_id_from_env = 1;
 | |
|     if (const char* inference_msg_id_env_p = std::getenv("INFERENCE_MSG_ID")) {
 | |
|         std::string inference_msg_id_env_str(inference_msg_id_env_p);
 | |
|         inference_msg_id_from_env = std::stoi(inference_msg_id_env_str);
 | |
|         if (inference_msg_id_from_env == 2) {
 | |
|             // 2 and -2 is perserve for no-output indication.
 | |
|             throw std::runtime_error(
 | |
|                 " INFERENCE_MSG_ID cannot be 2, please use other number.");
 | |
|         }
 | |
|         if (inference_msg_id_from_env < 0) {
 | |
|             throw std::runtime_error(
 | |
|                 " INFERENCE_MSG_ID cannot be negative, please use other "
 | |
|                 "number.");
 | |
|         }
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout << "Your INFERENCE_MSG_ID is: " << inference_msg_id_from_env
 | |
|                   << std::endl;
 | |
| #endif
 | |
|     } else {
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|         std::cout
 | |
|             << "Failed to got INFERENCE_MSG_ID at env, use (int)1 as default."
 | |
|             << std::endl;
 | |
| #endif
 | |
|     }
 | |
|     static key_t key = ftok("/dev/shm", msg_queue_id);
 | |
|     static int msgid = msgget(key, IPC_CREAT | 0666);
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|     std::cout << "save_output_key: " << key << std::endl;
 | |
|     std::cout << "save msgid: " << msgid << std::endl;
 | |
| #endif
 | |
|     msg_sed.mtype = 1;
 | |
|     bool not_need_stop_data = not_need_stop.data<bool>()[0];
 | |
|     msg_sed.mtext[0] = not_need_stop_data ? inference_msg_id_from_env
 | |
|                                           : -inference_msg_id_from_env;
 | |
|     int bsz = x.shape()[0];
 | |
|     int max_num_logprobs = logprob_token_ids.shape()[1];
 | |
|     msg_sed.mtext[1] = bsz;
 | |
|     for (int i = 0; i < bsz; i++) {
 | |
|         for (int j = 0; j < K + 1; j++) {
 | |
|             const int64_t offset = i * (K + 1) + j;
 | |
|             if (j == 0) {
 | |
|                 msg_sed.mtext[offset + 2] = (int)x_data[i];
 | |
|                 msg_sed.mtext_f[offset] = logprob_scores_data[i * max_num_logprobs + j];
 | |
|             } else if (j < max_num_logprobs) {
 | |
|                 msg_sed.mtext[offset + 2] = (int)logprob_token_ids_data[i * max_num_logprobs + j];
 | |
|                 msg_sed.mtext_f[offset] = logprob_scores_data[i * max_num_logprobs + j];
 | |
|             } else {
 | |
|                 msg_sed.mtext[offset + 2] = -1;
 | |
|                 msg_sed.mtext_f[offset] = 0.0;
 | |
|             }
 | |
|         }
 | |
|         msg_sed.mtext_ranks[i] = (int)ranks_data[i];
 | |
|     }
 | |
| #ifdef SAVE_WITH_OUTPUT_DEBUG
 | |
|     std::cout << "msg data: ";
 | |
|     for (int i = 0; i < bsz; i++) {
 | |
|         std::cout << " " << (int)x_data[i];
 | |
|     }
 | |
|     std::cout << std::endl;
 | |
| #endif
 | |
|     if ((msgsnd(msgid,
 | |
|                 &msg_sed,
 | |
|                 (MAX_BSZ * (K + 1) + 2) * 4 + (MAX_BSZ * (K + 1)) * 4 + MAX_BSZ * 4,
 | |
|                 0)) == -1) {
 | |
|         printf("full msg buffer\n");
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| PD_BUILD_STATIC_OP(save_output_topk)
 | |
|     .Inputs({"x", "topk_ids", "logprob_scores", "ranks", "not_need_stop"})
 | |
|     .Attrs({"rank_id: int64_t"})
 | |
|     .Outputs({"x_out"})
 | |
|     .SetInplaceMap({{"x", "x_out"}})
 | |
|     .SetKernelFn(PD_KERNEL(SaveOutMmsgTopK));
 |