Files
FastDeploy/python/fastdeploy/vision/matting/contrib/rvm.py
WJJ1995 718698a32a [Model] add RobustVideoMatting model (#400)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

* add rvm support

* support rvm model

* add rvm demo

* fixed bugs

* add rvm readme

* add TRT support

* add trt support

* add rvm test

* add EXPORT.md

* rename export.md

* rm poros doxyen

* deal with comments

* deal with comments

* add rvm video_mode note

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-10-26 14:30:04 +08:00

82 lines
3.0 KiB
Python
Executable File

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class RobustVideoMatting(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.ONNX):
"""Load a video matting model exported by RobustVideoMatting.
:param model_file: (str)Path of model file, e.g rvm/rvm_mobilenetv3_fp32.onnx
:param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
"""
super(RobustVideoMatting, self).__init__(runtime_option)
self._model = C.vision.matting.RobustVideoMatting(
model_file, params_file, self._runtime_option, model_format)
assert self.initialized, "RobustVideoMatting initialize failed."
def predict(self, input_image):
"""Matting an input image
:param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: MattingResult
"""
return self._model.predict(input_image)
@property
def size(self):
"""
Returns the preprocess image size
"""
return self._model.size
@property
def video_mode(self):
"""
Whether to open the video mode, if there are some irrelevant pictures, set it to fasle, the default is true
"""
return self._model.video_mode
@size.setter
def size(self, wh):
"""
Set the preprocess image size
"""
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh
@video_mode.setter
def video_mode(self, value):
"""
Set video_mode property, the default is true
"""
assert isinstance(
value, bool), "The value to set `video_mode` must be type of bool."
self._model.video_mode = value