mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* support face alignment PFLD * add PFLD demo * fixed FaceAlignmentResult * fixed bugs * fixed img size * fixed readme * deal with comments * fixed readme * add pfld testcase * update infer.py * add gflags for example * update c++ readme * add gflags in example * fixed for ci * fixed gflags.cmake * deal with comments * update infer demo * fixed bug in infer.cc Co-authored-by: Jason <jiangjiajun@baidu.com>
111 lines
3.9 KiB
C++
Executable File
111 lines
3.9 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
#include "gflags/gflags.h"
|
|
|
|
DEFINE_string(model, "", "Directory of the inference model.");
|
|
DEFINE_string(image, "", "Path of the image file.");
|
|
DEFINE_string(device, "cpu",
|
|
"Type of inference device, support 'cpu' or 'gpu'.");
|
|
DEFINE_string(backend, "default",
|
|
"The inference runtime backend, support: ['default', 'ort', "
|
|
"'paddle', 'ov', 'trt', 'paddle_trt']");
|
|
DEFINE_bool(use_fp16, false, "Whether to use FP16 mode, only support 'trt' and 'paddle_trt' backend");
|
|
|
|
void PrintUsage() {
|
|
std::cout << "Usage: infer_demo --model model_path --image img_path --device [cpu|gpu] --backend "
|
|
"[default|ort|paddle|ov|trt|paddle_trt] "
|
|
"--use_fp16 false"
|
|
<< std::endl;
|
|
std::cout << "Default value of device: cpu" << std::endl;
|
|
std::cout << "Default value of backend: default" << std::endl;
|
|
std::cout << "Default value of use_fp16: false" << std::endl;
|
|
}
|
|
|
|
bool CreateRuntimeOption(fastdeploy::RuntimeOption* option) {
|
|
if (FLAGS_device == "gpu") {
|
|
option->UseGpu();
|
|
if (FLAGS_backend == "ort") {
|
|
option->UseOrtBackend();
|
|
} else if (FLAGS_backend == "paddle") {
|
|
option->UsePaddleBackend();
|
|
} else if (FLAGS_backend == "trt" ||
|
|
FLAGS_backend == "paddle_trt") {
|
|
option->UseTrtBackend();
|
|
option->SetTrtInputShape("input", {1, 3, 112, 112});
|
|
if (FLAGS_backend == "paddle_trt") {
|
|
option->EnablePaddleToTrt();
|
|
}
|
|
if (FLAGS_use_fp16) {
|
|
option->EnableTrtFP16();
|
|
}
|
|
} else if (FLAGS_backend == "default") {
|
|
return true;
|
|
} else {
|
|
std::cout << "While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, " << FLAGS_backend << " is not supported." << std::endl;
|
|
return false;
|
|
}
|
|
} else if (FLAGS_device == "cpu") {
|
|
if (FLAGS_backend == "ort") {
|
|
option->UseOrtBackend();
|
|
} else if (FLAGS_backend == "ov") {
|
|
option->UseOpenVINOBackend();
|
|
} else if (FLAGS_backend == "paddle") {
|
|
option->UsePaddleBackend();
|
|
} else if (FLAGS_backend == "default") {
|
|
return true;
|
|
} else {
|
|
std::cout << "While inference with CPU, only support default/ort/ov/paddle now, " << FLAGS_backend << " is not supported." << std::endl;
|
|
return false;
|
|
}
|
|
} else {
|
|
std::cerr << "Only support device CPU/GPU now, " << FLAGS_device << " is not supported." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
google::ParseCommandLineFlags(&argc, &argv, true);
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (!CreateRuntimeOption(&option)) {
|
|
PrintUsage();
|
|
return -1;
|
|
}
|
|
|
|
auto model = fastdeploy::vision::facealign::PFLD(FLAGS_model, "", option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
auto im = cv::imread(FLAGS_image);
|
|
auto im_bak = im.clone();
|
|
|
|
fastdeploy::vision::FaceAlignmentResult res;
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return -1;
|
|
}
|
|
std::cout << res.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisFaceAlignment(im_bak, res);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
|
|
return 0;
|
|
}
|