mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* [backend] support bechmark mode for runtime and backend * [backend] support bechmark mode for runtime and backend * [pybind11] add benchmark methods pybind * [pybind11] add benchmark methods pybind * [Other] Update build scripts * [Other] Update cmake/summary.cmake * [Other] update build scripts * [Other] add ENABLE_BENCHMARK option -> setup.py * optimize backend time recording * optimize backend time recording * optimize trt backend time record * [backend] optimze backend_time recording for trt * [benchmark] remove redundant logs * fixed ov_backend confilct * [benchmark] fixed paddle_backend conflicts * [benchmark] fixed paddle_backend conflicts * [benchmark] fixed paddle_backend conflicts * [benchmark] remove use_gpu option from ort backend option * [benchmark] update benchmark_ppdet.py * [benchmark] update benchmark_ppcls.py * fixed lite backend conflicts * [Lite] fixed lite xpu * add benchmark macro * add RUNTIME_PROFILE_LOOP macros * add comments for RUNTIME_PROFILE macros * add comments for new apis * add comments for new apis * update benchmark_ppdet.py * afixed bugs * remove unused codes * optimize RUNTIME_PROFILE_LOOP macros * optimize RUNTIME_PROFILE_LOOP macros * add comments for benchmark option and result * add docs for benchmark namespace
246 lines
9.0 KiB
C++
246 lines
9.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/runtime/backends/lite/lite_backend.h"
|
|
// https://github.com/PaddlePaddle/Paddle-Lite/issues/8290
|
|
// When compiling the FastDeploy dynamic library, namely,
|
|
// WITH_STATIC_LIB=OFF, and depending on the Paddle Lite
|
|
// static library, you need to include the fake registration
|
|
// codes of Paddle Lite. When you compile the FastDeploy static
|
|
// library and depends on the Paddle Lite static library,
|
|
// WITH_STATIC_LIB=ON, you do not need to include the fake
|
|
// registration codes for Paddle Lite, but wait until you
|
|
// use the FastDeploy static library.
|
|
#if (defined(WITH_LITE_STATIC) && (!defined(WITH_STATIC_LIB)))
|
|
#warning You are compiling the FastDeploy dynamic library with \
|
|
Paddle Lite static lib We will automatically add some registration \
|
|
codes for ops, kernels and passes for Paddle Lite.
|
|
#include "paddle_use_kernels.h" // NOLINT
|
|
#include "paddle_use_ops.h" // NOLINT
|
|
#include "paddle_use_passes.h" // NOLINT
|
|
#endif
|
|
|
|
#include <cstring>
|
|
|
|
namespace fastdeploy {
|
|
|
|
void LiteBackend::BuildOption(const LiteBackendOption& option) {
|
|
option_ = option;
|
|
|
|
if (option_.device == Device::CPU) {
|
|
ConfigureCpu(option_);
|
|
} else if (option_.device == Device::TIMVX) {
|
|
ConfigureTimvx(option_);
|
|
} else if (option_.device == Device::KUNLUNXIN) {
|
|
ConfigureKunlunXin(option_);
|
|
} else if (option_.device == Device::ASCEND) {
|
|
ConfigureAscend(option_);
|
|
}
|
|
if (option_.cpu_threads > 0) {
|
|
config_.set_threads(option_.cpu_threads);
|
|
}
|
|
if (option_.power_mode > 0) {
|
|
config_.set_power_mode(
|
|
static_cast<paddle::lite_api::PowerMode>(option_.power_mode));
|
|
}
|
|
}
|
|
|
|
bool LiteBackend::InitFromPaddle(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const LiteBackendOption& option) {
|
|
if (initialized_) {
|
|
FDERROR << "LiteBackend is already initialized, cannot initialize again."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
config_.set_model_file(model_file);
|
|
config_.set_param_file(params_file);
|
|
BuildOption(option);
|
|
predictor_ =
|
|
paddle::lite_api::CreatePaddlePredictor<paddle::lite_api::CxxConfig>(
|
|
config_);
|
|
if (option_.optimized_model_dir != "") {
|
|
FDINFO << "Optimzed model dir is not empty, will save optimized model to: "
|
|
<< option_.optimized_model_dir << std::endl;
|
|
predictor_->SaveOptimizedModel(
|
|
option_.optimized_model_dir,
|
|
paddle::lite_api::LiteModelType::kNaiveBuffer);
|
|
}
|
|
|
|
inputs_desc_.clear();
|
|
outputs_desc_.clear();
|
|
inputs_order_.clear();
|
|
std::vector<std::string> input_names = predictor_->GetInputNames();
|
|
std::vector<std::string> output_names = predictor_->GetOutputNames();
|
|
for (size_t i = 0; i < input_names.size(); ++i) {
|
|
inputs_order_[input_names[i]] = i;
|
|
TensorInfo info;
|
|
auto tensor = predictor_->GetInput(i);
|
|
auto shape = tensor->shape();
|
|
info.shape.assign(shape.begin(), shape.end());
|
|
info.name = input_names[i];
|
|
info.dtype = LiteDataTypeToFD(tensor->precision());
|
|
inputs_desc_.emplace_back(info);
|
|
}
|
|
for (size_t i = 0; i < output_names.size(); ++i) {
|
|
TensorInfo info;
|
|
auto tensor = predictor_->GetOutput(i);
|
|
auto shape = tensor->shape();
|
|
info.shape.assign(shape.begin(), shape.end());
|
|
info.name = output_names[i];
|
|
if (option_.device != Device::KUNLUNXIN) {
|
|
info.dtype = LiteDataTypeToFD(tensor->precision());
|
|
}
|
|
outputs_desc_.emplace_back(info);
|
|
}
|
|
|
|
initialized_ = true;
|
|
return true;
|
|
}
|
|
|
|
TensorInfo LiteBackend::GetInputInfo(int index) {
|
|
FDASSERT(index < NumInputs(),
|
|
"The index: %d should less than the number of inputs: %d.", index,
|
|
NumInputs());
|
|
return inputs_desc_[index];
|
|
}
|
|
|
|
std::vector<TensorInfo> LiteBackend::GetInputInfos() { return inputs_desc_; }
|
|
|
|
TensorInfo LiteBackend::GetOutputInfo(int index) {
|
|
FDASSERT(index < NumOutputs(),
|
|
"The index: %d should less than the number of outputs %d.", index,
|
|
NumOutputs());
|
|
return outputs_desc_[index];
|
|
}
|
|
|
|
std::vector<TensorInfo> LiteBackend::GetOutputInfos() { return outputs_desc_; }
|
|
|
|
bool LiteBackend::Infer(std::vector<FDTensor>& inputs,
|
|
std::vector<FDTensor>* outputs, bool copy_to_fd) {
|
|
if (inputs.size() != inputs_desc_.size()) {
|
|
FDERROR << "[LiteBackend] Size of inputs(" << inputs.size()
|
|
<< ") should keep same with the inputs of this model("
|
|
<< inputs_desc_.size() << ")." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
RUNTIME_PROFILE_LOOP_H2D_D2H_BEGIN
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
auto iter = inputs_order_.find(inputs[i].name);
|
|
if (iter == inputs_order_.end()) {
|
|
FDERROR << "Cannot find input with name:" << inputs[i].name
|
|
<< " in loaded model." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
auto tensor = predictor_->GetInput(iter->second);
|
|
// Adjust dims only, allocate lazy.
|
|
tensor->Resize(inputs[i].shape);
|
|
if (inputs[i].dtype == FDDataType::FP32) {
|
|
tensor->CopyFromCpu<float, paddle::lite_api::TargetType::kHost>(
|
|
reinterpret_cast<const float*>(
|
|
const_cast<void*>(inputs[i].CpuData())));
|
|
} else if (inputs[i].dtype == FDDataType::INT32) {
|
|
tensor->CopyFromCpu<int, paddle::lite_api::TargetType::kHost>(
|
|
reinterpret_cast<const int*>(const_cast<void*>(inputs[i].CpuData())));
|
|
} else if (inputs[i].dtype == FDDataType::INT8) {
|
|
tensor->CopyFromCpu<int8_t, paddle::lite_api::TargetType::kHost>(
|
|
reinterpret_cast<const int8_t*>(
|
|
const_cast<void*>(inputs[i].CpuData())));
|
|
} else if (inputs[i].dtype == FDDataType::UINT8) {
|
|
tensor->CopyFromCpu<uint8_t, paddle::lite_api::TargetType::kHost>(
|
|
reinterpret_cast<const uint8_t*>(
|
|
const_cast<void*>(inputs[i].CpuData())));
|
|
} else if (inputs[i].dtype == FDDataType::INT64) {
|
|
#if (defined(__aarch64__) || defined(__x86_64__) || defined(_M_X64) || \
|
|
defined(_M_ARM64))
|
|
tensor->CopyFromCpu<int64_t, paddle::lite_api::TargetType::kHost>(
|
|
reinterpret_cast<const int64_t*>(
|
|
const_cast<void*>(inputs[i].CpuData())));
|
|
#else
|
|
FDASSERT(false, "FDDataType::INT64 is not support for x86/armv7 now!");
|
|
#endif
|
|
} else {
|
|
FDASSERT(false, "Unexpected data type of %d.", inputs[i].dtype);
|
|
}
|
|
}
|
|
|
|
RUNTIME_PROFILE_LOOP_BEGIN(1)
|
|
predictor_->Run();
|
|
RUNTIME_PROFILE_LOOP_END
|
|
|
|
outputs->resize(outputs_desc_.size());
|
|
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
|
|
auto tensor = predictor_->GetOutput(i);
|
|
if (outputs_desc_[i].dtype != LiteDataTypeToFD(tensor->precision())) {
|
|
outputs_desc_[i].dtype = LiteDataTypeToFD(tensor->precision());
|
|
}
|
|
(*outputs)[i].Resize(tensor->shape(), outputs_desc_[i].dtype,
|
|
outputs_desc_[i].name);
|
|
memcpy((*outputs)[i].MutableData(), tensor->data<void>(),
|
|
(*outputs)[i].Nbytes());
|
|
}
|
|
RUNTIME_PROFILE_LOOP_H2D_D2H_END
|
|
return true;
|
|
}
|
|
|
|
bool ReadFile(const std::string& filename, std::vector<char>* contents,
|
|
bool binary) {
|
|
FILE* fp = fopen(filename.c_str(), binary ? "rb" : "r");
|
|
if (!fp) {
|
|
FDERROR << "Cannot open file " << filename << "." << std::endl;
|
|
return false;
|
|
}
|
|
fseek(fp, 0, SEEK_END);
|
|
size_t size = ftell(fp);
|
|
fseek(fp, 0, SEEK_SET);
|
|
contents->clear();
|
|
contents->resize(size);
|
|
size_t offset = 0;
|
|
char* ptr = reinterpret_cast<char*>(&(contents->at(0)));
|
|
while (offset < size) {
|
|
size_t already_read = fread(ptr, 1, size - offset, fp);
|
|
offset += already_read;
|
|
ptr += already_read;
|
|
}
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
|
|
// Convert data type from paddle lite to fastdeploy
|
|
FDDataType LiteDataTypeToFD(const paddle::lite_api::PrecisionType& dtype) {
|
|
if (dtype == paddle::lite_api::PrecisionType::kFloat) {
|
|
return FDDataType::FP32;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt8) {
|
|
return FDDataType::INT8;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt32) {
|
|
return FDDataType::INT32;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt64) {
|
|
return FDDataType::INT64;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kInt16) {
|
|
return FDDataType::INT16;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kUInt8) {
|
|
return FDDataType::UINT8;
|
|
} else if (dtype == paddle::lite_api::PrecisionType::kFP64) {
|
|
return FDDataType::FP64;
|
|
}
|
|
FDASSERT(false, "Unexpected data type of %s.",
|
|
paddle::lite_api::PrecisionToStr(dtype).c_str());
|
|
return FDDataType::FP32;
|
|
}
|
|
|
|
} // namespace fastdeploy
|