mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [feat] simplify configuration for pd-disaggregated deployment, and refactor post-init and usage for all ports * [fix] fix some bugs * [fix] fix rdma port for cache manager/messager * [fix] temporarily cancel port availability check to see if it can pass ci test * [feat] simplify args for multi api server * [fix] fix dp * [fix] fix port for xpu * [fix] add tests for ports post processing & fix ci * [test] fix test_multi_api_server * [fix] fix rdma_comm_ports args for multi_api_server * [fix] fix test_common_engine * [fix] fix test_cache_transfer_manager * [chore] automatically setting FD_ENABLE_MULTI_API_SERVER * [fix] avoid api server from creating engine_args twice * [fix] fix test_run_batch * [fix] fix test_metrics * [fix] fix splitwise connector init * [test] add test_rdma_transfer and test_expert_service * [fix] fix code syntax * [fix] fix test_rdma_transfer and build wheel with rdma script
380 lines
14 KiB
Python
380 lines
14 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import pickle
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import Dict, List
|
|
|
|
import zmq
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.engine.request import Request, RequestOutput
|
|
from fastdeploy.metrics.metrics import main_process_metrics
|
|
from fastdeploy.utils import get_logger
|
|
|
|
|
|
class SplitwiseConnector:
|
|
"""
|
|
SplitwiseConnector class for managing and scheduling Splitwise tasks.
|
|
"""
|
|
|
|
def __init__(self, cfg, worker_queue, resource_manager):
|
|
"""
|
|
Initialize the SplitwiseConnector instance.
|
|
|
|
Parameters:
|
|
cfg (dict): Configuration information.
|
|
worker_queue (object): Worker queue object.
|
|
resource_manager (object): Resource manager object.
|
|
"""
|
|
self.cfg = cfg
|
|
self.local_data_parallel_id = self.cfg.parallel_config.local_data_parallel_id
|
|
if self.cfg.parallel_config.data_parallel_size > 1:
|
|
self.logger = get_logger(
|
|
"splitwise_connector", f"splitwise_connector_dprank{self.local_data_parallel_id}.log"
|
|
)
|
|
else:
|
|
self.logger = get_logger("splitwise_connector", "splitwise_connector.log")
|
|
self.engine_worker_queue = worker_queue
|
|
self.resource_manager = resource_manager
|
|
self.current_request_ids = dict()
|
|
self.enable_decode_cache_task = envs.FD_ENABLE_CACHE_TASK == "1"
|
|
|
|
if self.cfg.scheduler_config.splitwise_role != "mixed":
|
|
self.zmq_ctx = zmq.Context()
|
|
self.push_sockets: Dict[str, zmq.Socket] = {}
|
|
self.pull_socket = None
|
|
self.io_executor = ThreadPoolExecutor(max_workers=4)
|
|
self._init_network()
|
|
|
|
def _init_network(self):
|
|
"""
|
|
init network for splitwise
|
|
"""
|
|
|
|
self.router_socket = self.zmq_ctx.socket(zmq.ROUTER)
|
|
self.router_socket.setsockopt(zmq.LINGER, 0)
|
|
self.router_socket.setsockopt(zmq.SNDHWM, 1000)
|
|
self.router_socket.setsockopt(zmq.ROUTER_MANDATORY, 1)
|
|
self.logger.info(f"_init_network: bind {self.cfg.cache_config.local_pd_comm_port}")
|
|
self.router_socket.bind(f"tcp://*:{self.cfg.cache_config.local_pd_comm_port}")
|
|
|
|
self.poller = zmq.Poller()
|
|
self.poller.register(self.router_socket, zmq.POLLIN)
|
|
|
|
self.push_sockets = {}
|
|
|
|
self.prefill_cache_info = []
|
|
|
|
def start_receiver(self):
|
|
"""
|
|
start receiver thread
|
|
"""
|
|
while True:
|
|
try:
|
|
if hasattr(self, "poller"):
|
|
socks = dict(self.poller.poll(100))
|
|
if not socks:
|
|
continue
|
|
else:
|
|
self.logger.debug("start_receiver: receive %s", socks)
|
|
|
|
frames = self.router_socket.recv_multipart()
|
|
self.logger.debug("start_receiver: frames: %s", frames)
|
|
# message = frames[-1]
|
|
self.io_executor.submit(self._process_message, frames)
|
|
time.sleep(0.001)
|
|
else:
|
|
time.sleep(5)
|
|
except Exception as e:
|
|
self.logger.error(f"start_receiver: Receiver error: {e}, {str(traceback.format_exc())}")
|
|
time.sleep(1)
|
|
|
|
def _get_push_socket(self, addr):
|
|
"""获取或创建 DEALER socket"""
|
|
|
|
if addr in self.push_sockets:
|
|
sock = self.push_sockets[addr]
|
|
if not sock.closed:
|
|
return sock
|
|
|
|
try:
|
|
self.logger.info(f"_get_push_socket: Establishing new connection to {addr}")
|
|
sock = self.zmq_ctx.socket(zmq.DEALER)
|
|
|
|
# 设置连接参数
|
|
sock.setsockopt(zmq.LINGER, 0)
|
|
sock.setsockopt(zmq.SNDHWM, 1000)
|
|
sock.setsockopt(zmq.RECONNECT_IVL, 1000)
|
|
sock.setsockopt(zmq.RECONNECT_IVL_MAX, 5000)
|
|
|
|
sock.setsockopt(zmq.TCP_KEEPALIVE, 1)
|
|
sock.setsockopt(zmq.TCP_KEEPALIVE_IDLE, 60)
|
|
sock.setsockopt(zmq.TCP_KEEPALIVE_INTVL, 10)
|
|
|
|
sock.connect(f"tcp://{addr}")
|
|
|
|
self.push_sockets[addr] = sock
|
|
return sock
|
|
|
|
except zmq.ZMQError as e:
|
|
self.logger.error(f"_get_push_socket: Connection to {addr} failed: {e}")
|
|
|
|
raise ConnectionError(f"Failed to connect to {addr}") from e
|
|
|
|
def _send_message(self, addr, msg_type: str, payload):
|
|
if not addr:
|
|
return
|
|
try:
|
|
message = self._serialize_message(msg_type, payload)
|
|
try:
|
|
self.logger.info(f"_send_message: msg_type={msg_type} addr={addr}")
|
|
sock = self._get_push_socket(addr)
|
|
sock.send_multipart(message)
|
|
|
|
self.logger.info(f"Sent {msg_type} to {addr}")
|
|
|
|
except ConnectionError:
|
|
self.logger.warning(f"_send_message: Connection to {addr} not established")
|
|
except zmq.Again:
|
|
self.logger.warning(f"_send_message: Send queue full for {addr}")
|
|
except Exception as e:
|
|
self.logger.error(f"_send_message: Send to {addr} failed: {e}, {str(traceback.format_exc())}")
|
|
main_process_metrics.send_cache_failed_num.inc()
|
|
self._close_connection(addr)
|
|
except Exception as e:
|
|
self.logger.error(f"_send_message: Message preparation failed: {e}")
|
|
|
|
def _close_connection(self, addr):
|
|
"""
|
|
Close the connection to the specified address.
|
|
"""
|
|
if addr in self.push_sockets:
|
|
self.push_sockets[addr].close()
|
|
del self.push_sockets[addr]
|
|
|
|
def send_splitwise_tasks(self, tasks: List[Request], current_id):
|
|
"""
|
|
Prefill send splitwise tasks to decode.
|
|
|
|
Parameters:
|
|
tasks (list): List of tasks.
|
|
current_id (int): Current ID.
|
|
"""
|
|
for task in tasks:
|
|
if task.disaggregate_info is None:
|
|
continue
|
|
|
|
self.current_request_ids[task.request_id] = "init"
|
|
task.disaggregate_info["role"] = "decode"
|
|
addr = f"{task.disaggregate_info['decode_ip']}:{task.disaggregate_info['decode_connector_port']}"
|
|
self.logger.info(f"send_splitwise_tasks: protocol=rdma, addr={addr}, task={task.request_id}")
|
|
self._send_message(addr, "prefill", [task])
|
|
|
|
task.disaggregate_info["role"] = "prefill"
|
|
|
|
def send_first_token(self, prefill_msg, tasks_list):
|
|
"""
|
|
Prefill send first token to specific port
|
|
"""
|
|
if not isinstance(tasks_list, list):
|
|
tasks_list = [tasks_list]
|
|
|
|
addr = f"{prefill_msg['decode_ip']}:{prefill_msg['decode_connector_port']}"
|
|
self.logger.info(
|
|
f"send_first_token: send first token to decode ({addr}), {[x.request_id for x in tasks_list]}"
|
|
)
|
|
self._send_message(addr, "decode", tasks_list)
|
|
|
|
def check_decode_allocated(self, task):
|
|
"""Check whether the requests have been allocated resources in decode."""
|
|
self.logger.debug(f"check_decode_allocated: {task.request_id}")
|
|
start_time = time.time()
|
|
if task.disaggregate_info is None:
|
|
return True, ""
|
|
if self.enable_decode_cache_task:
|
|
return True, ""
|
|
|
|
while self.current_request_ids[task.request_id] == "init":
|
|
time.sleep(0.001)
|
|
if time.time() - start_time > envs.FD_PREFILL_WAIT_DECODE_RESOURCE_SECONDS:
|
|
del self.current_request_ids[task.request_id]
|
|
return False, "timeout"
|
|
|
|
msg = self.current_request_ids[task.request_id]
|
|
del self.current_request_ids[task.request_id]
|
|
if msg == "finished":
|
|
return True, ""
|
|
else:
|
|
self.logger.error(f"check_decode_allocated: Receive_decode_allocated error: {msg}")
|
|
return False, msg
|
|
|
|
def send_cache_info_to_messager(self, tasks: List[Request], current_id):
|
|
"""
|
|
Prefill sends the request with allocated block ids to cache messager by engine worker queue.
|
|
|
|
args:
|
|
tasks (list): List of tasks.
|
|
current_id (int): Current id to indicate the prefill number.
|
|
"""
|
|
cache_info = []
|
|
for i in range(len(tasks)):
|
|
dsg_info = tasks[i].disaggregate_info
|
|
if dsg_info is None:
|
|
continue
|
|
|
|
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
|
|
info = {
|
|
"request_id": tasks[i].request_id,
|
|
"src_block_ids": tasks[i].block_tables,
|
|
"current_id": tasks[i].idx,
|
|
"need_prefill_tokens": tasks[i].need_prefill_tokens,
|
|
}
|
|
else:
|
|
info = {
|
|
"request_id": tasks[i].request_id,
|
|
"src_block_ids": tasks[i].block_tables,
|
|
"current_id": current_id,
|
|
}
|
|
info.update(dsg_info)
|
|
cache_info.append(info)
|
|
|
|
self.logger.debug(f"send_cache_info_to_messager, {cache_info}")
|
|
self.engine_worker_queue.put_cache_info(cache_info)
|
|
|
|
def send_cache_info_to_prefill(self, tasks: List[Request]):
|
|
"""
|
|
Decode sends the request with allocated block ids to prefill.
|
|
|
|
args:
|
|
tasks (list): List of tasks.
|
|
"""
|
|
cache_info = dict()
|
|
for i in range(len(tasks)):
|
|
dsg_info = tasks[i].disaggregate_info
|
|
if dsg_info is None:
|
|
self.logger.debug(f"skip send_cache_infos_to_prefill, {tasks[i].request_id}")
|
|
continue
|
|
|
|
if tasks[i].get("error_msg", None) is not None:
|
|
info = {
|
|
"request_id": tasks[i].request_id,
|
|
"error_msg": tasks[i].get("error_msg"),
|
|
}
|
|
else:
|
|
addr = f"{dsg_info['prefill_ip']}:" + f"{dsg_info['prefill_connector_port']}"
|
|
info = {
|
|
"request_id": tasks[i].request_id,
|
|
"dest_block_ids": dsg_info["block_tables"],
|
|
}
|
|
if addr not in cache_info:
|
|
cache_info[addr] = []
|
|
cache_info[addr].append(info)
|
|
|
|
self.logger.debug(f"send cache info to prefill, {cache_info}")
|
|
if len(cache_info):
|
|
for key, info in cache_info.items():
|
|
self._send_message(key, "cache_sync", info)
|
|
|
|
def _serialize_message(self, msg_type: str, payload) -> bytes:
|
|
# TODO 压缩
|
|
if msg_type == "decode" or msg_type == "prefill":
|
|
payload = [output.to_dict() for output in payload]
|
|
|
|
# Prepare data
|
|
data = {"type": msg_type, "payload": payload}
|
|
|
|
# Pickle protocol 5 supports extracting large arrays (buffers)
|
|
buffers = []
|
|
# Serialize main data, strip large arrays as references into buffers
|
|
main_bytes = pickle.dumps(data, protocol=5, buffer_callback=buffers.append)
|
|
# Serialize using pickle protocol 5 which provides efficient handling
|
|
# of large numpy arrays through out-of-band buffers.
|
|
# Returns: [main_bytes, buffer1, buffer2, ...]
|
|
# where main_bytes contains the serialized structure and buffers contain
|
|
# the actual array data extracted for efficient transmission.
|
|
return [main_bytes] + buffers
|
|
|
|
def _deserialize_message(self, frames: List[bytes]):
|
|
"""
|
|
Deserialize message from ZMQ frames using pickle protocol 5.
|
|
|
|
Args:
|
|
frames: List of byte frames where:
|
|
- frames[0]: Identity frame (sender address)
|
|
- frames[1]: Main pickled data structure
|
|
- frames[2:]: Out-of-band buffers (numpy arrays)
|
|
|
|
Returns:
|
|
Tuple of (message_type: str, payload: Any)
|
|
"""
|
|
# identity = frames[0]
|
|
|
|
if len(frames) < 2:
|
|
raise ValueError(f"Received frames too short: expected at least 2 frames but got {len(frames)}")
|
|
|
|
main_bytes = frames[1]
|
|
buffers = frames[2:]
|
|
|
|
# Restore data, pickle will automatically fill buffers back into numpy arrays
|
|
message = pickle.loads(main_bytes, buffers=buffers)
|
|
return message["type"], message["payload"]
|
|
|
|
def _process_message(self, frames: List[bytes]):
|
|
"""
|
|
process message
|
|
"""
|
|
try:
|
|
msg_type, payload = self._deserialize_message(frames)
|
|
self.logger.info(f"_process_message: {msg_type}")
|
|
|
|
if msg_type == "prefill":
|
|
self._handle_prefill(payload)
|
|
elif msg_type == "decode":
|
|
self._handle_decode(payload)
|
|
elif msg_type == "cache_sync":
|
|
for task in payload:
|
|
self.logger.info(f"_process_message: cache_sync task: {task}")
|
|
current_status = task.get("error_msg", "finished")
|
|
self.current_request_ids[task["request_id"]] = current_status
|
|
if self.enable_decode_cache_task:
|
|
del self.current_request_ids[task["request_id"]]
|
|
if current_status == "finished":
|
|
self.engine_worker_queue.put_cache_info(payload)
|
|
|
|
except Exception as e:
|
|
self.logger.error(f"_process_message: Message processing failed: {e}, {str(traceback.format_exc())}")
|
|
|
|
def _handle_prefill(self, tasks):
|
|
"""
|
|
Handle prefill tasks from other nodes.
|
|
"""
|
|
self.logger.debug(f"_handle_prefill: receive payload {tasks}")
|
|
tasks_data = [Request.from_dict(task) for task in tasks]
|
|
self.engine_worker_queue.put_disaggregated_tasks(("decode", tasks_data))
|
|
|
|
def _handle_decode(self, payload):
|
|
"""
|
|
Handle decode tasks from other nodes.
|
|
"""
|
|
self.logger.debug(f"_handle_decode: receive payload {payload}")
|
|
tasks = []
|
|
for task in payload:
|
|
tasks.append(RequestOutput.from_dict(task))
|
|
self.engine_worker_queue.put_disaggregated_tasks(("decode", tasks))
|