Files
FastDeploy/fastdeploy/model_executor/layers/pool/metadata.py
lizexu123 c234b995ab [Feature] support pooling model dummy_run (#4345)
* support qwen3-embedding

* fix ci bug

* support pooling dummy_run

* fix

* delete print

* parallel_config.max_model_len

* delete is_pooling_model in dummy_run

* fix

* fd_model

* fix embedding load

* fix

* fix post_process
2025-10-17 13:30:55 +08:00

87 lines
3.0 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from dataclasses import dataclass
from typing import Optional
import paddle
from fastdeploy.engine.pooling_params import PoolingParams
@dataclass
class PoolingCursor:
index: list[int]
first_token_indices_gpu: paddle.Tensor
last_token_indices_gpu: paddle.Tensor
prompt_lens_cpu: paddle.Tensor
num_scheduled_tokens_cpu: paddle.Tensor
def __getitem__(self, indices: slice):
return PoolingCursor(
index=self.index[indices],
first_token_indices_gpu=self.first_token_indices_gpu[indices],
last_token_indices_gpu=self.last_token_indices_gpu[indices],
prompt_lens_cpu=self.prompt_lens_cpu[indices],
num_scheduled_tokens_cpu=self.num_scheduled_tokens_cpu[indices],
)
def is_partial_prefill(self):
return not paddle.all(self.prompt_lens_cpu == self.num_scheduled_tokens_cpu).item()
@dataclass
class PoolingMetadata:
"""Tensors for pooling."""
prompt_lens: paddle.Tensor # CPU Tensor
prompt_token_ids: Optional[paddle.Tensor]
pooling_params: list[PoolingParams]
pooling_cursor: Optional[PoolingCursor] = None
def __getitem__(self, indices: slice):
return PoolingMetadata(
prompt_lens=self.prompt_lens[indices],
prompt_token_ids=None if self.prompt_token_ids is None else self.prompt_token_ids[indices],
pooling_params=self.pooling_params[indices],
pooling_cursor=None if self.pooling_cursor is None else self.pooling_cursor[indices],
)
def build_pooling_cursor(self, num_scheduled_tokens: list[int], device: str):
self.pooling_cursor = build_pooling_cursor(num_scheduled_tokens, self.prompt_lens, device)
def build_pooling_cursor(num_scheduled_tokens: list[int], prompt_lens: paddle.Tensor, device: str):
assert len(prompt_lens) == len(num_scheduled_tokens)
n_seq = len(num_scheduled_tokens)
index = list(range(n_seq))
num_scheduled_tokens = paddle.to_tensor(num_scheduled_tokens)
cumsum = paddle.zeros([n_seq + 1], dtype="int64")
paddle.cumsum(num_scheduled_tokens, axis=0, out=cumsum[1:])
if device == "gpu":
cumsum_device = cumsum.cuda()
else:
cumsum_device = cumsum
return PoolingCursor(
index=index,
first_token_indices_gpu=cumsum_device[:n_seq],
last_token_indices_gpu=cumsum_device[1:] - 1,
prompt_lens_cpu=prompt_lens,
num_scheduled_tokens_cpu=num_scheduled_tokens,
)