Files
FastDeploy/fastdeploy/vision/ocr/ppocr/structurev2_layout_postprocessor.h
DefTruth 6d0261e9e4 [Model] Support PP-StructureV2-Layout model (#1867)
* [Model] init pp-structurev2-layout code

* [Model] init pp-structurev2-layout code

* [Model] init pp-structurev2-layout code

* [Model] add structurev2_layout_preprocessor

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [pybind] add pp-structurev2-layout model pybind

* [pybind] add pp-structurev2-layout model pybind

* [Bug Fix] fixed code style

* [examples] add pp-structurev2-layout c++ examples

* [PP-StructureV2] add python example and docs

* [benchmark] add pp-structurev2-layout benchmark support
2023-05-05 13:05:58 +08:00

81 lines
3.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
/*! @brief Postprocessor object for PaddleDet serials model.
*/
class FASTDEPLOY_DECL StructureV2LayoutPostprocessor {
public:
StructureV2LayoutPostprocessor() {}
/** \brief Process the result of runtime and fill to batch DetectionResult
*
* \param[in] tensors The inference result from runtime
* \param[in] results The output result of layout detection
* \param[in] batch_layout_img_info The image info of input images,
* {{image width, image height, resize width, resize height},...}
* \return true if the postprocess successed, otherwise false
*/
bool Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results,
const std::vector<std::array<int, 4>>& batch_layout_img_info);
/// Set score_threshold_ for layout detection postprocess, default is 0.4
void SetScoreThreshold(float score_threshold) { score_threshold_ = score_threshold; }
/// Set nms_threshold_ for layout detection postprocess, default is 0.5
void SetNMSThreshold(float nms_threshold) { nms_threshold_ = nms_threshold; }
/// Set num_class_ for layout detection postprocess, default is 5
void SetNumClass(int num_class) { num_class_ = num_class; }
/// Set fpn_stride_ for layout detection postprocess, default is {8, 16, 32, 64}
void SetFPNStride(const std::vector<int>& fpn_stride) { fpn_stride_ = fpn_stride; }
/// Set reg_max_ for layout detection postprocess, default is 8
void SetRegMax(int reg_max) { reg_max_ = reg_max; } // should private ?
/// Get score_threshold_ of layout detection postprocess, default is 0.4
float GetScoreThreshold() const { return score_threshold_; }
/// Get nms_threshold_ of layout detection postprocess, default is 0.5
float GetNMSThreshold() const { return nms_threshold_; }
/// Get num_class_ of layout detection postprocess, default is 5
int GetNumClass() const { return num_class_; }
/// Get fpn_stride_ of layout detection postprocess, default is {8, 16, 32, 64}
std::vector<int> GetFPNStride() const { return fpn_stride_; }
/// Get reg_max_ of layout detection postprocess, default is 8
int GetRegMax() const { return reg_max_; }
private:
std::array<float, 4> DisPred2Bbox(const std::vector<float>& bbox_pred, int x, int y,
int stride, int resize_w, int resize_h, int reg_max);
bool SingleBatchPostprocessor(const std::vector<FDTensor>& single_batch_tensors,
const std::array<int, 4>& layout_img_info,
DetectionResult* result);
void SetSingleBatchExternalData(const std::vector<FDTensor>& tensors,
std::vector<FDTensor>& single_batch_tensors,
size_t batch_idx);
std::vector<int> fpn_stride_ = {8, 16, 32, 64};
float score_threshold_ = 0.4;
float nms_threshold_ = 0.5;
int num_class_ = 5;
int reg_max_ = 8;
};
} // namespace ocr
} // namespace vision
} // namespace fastdeploy