mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00
71 lines
2.6 KiB
C++
71 lines
2.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#pragma once
|
||
#include "fastdeploy/fastdeploy_model.h"
|
||
#include "fastdeploy/vision/common/processors/transform.h"
|
||
#include "fastdeploy/vision/common/result.h"
|
||
|
||
namespace fastdeploy {
|
||
|
||
namespace vision {
|
||
|
||
namespace matting {
|
||
|
||
class FASTDEPLOY_DECL MODNet : public FastDeployModel {
|
||
public:
|
||
// 当model_format为ONNX时,无需指定params_file
|
||
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
||
MODNet(const std::string& model_file, const std::string& params_file = "",
|
||
const RuntimeOption& custom_option = RuntimeOption(),
|
||
const Frontend& model_format = Frontend::ONNX);
|
||
|
||
// 定义模型的名称
|
||
std::string ModelName() const { return "matting/MODNet"; }
|
||
|
||
// 以下为一些可供用户修改的属性
|
||
// tuple of (width, height), default (256, 256)
|
||
std::vector<int> size;
|
||
// 归一化的 alpha 和 beta,x'=x*alpha+beta
|
||
std::vector<float> alpha;
|
||
std::vector<float> beta;
|
||
// whether to swap the B and R channel, such as BGR->RGB, default true.
|
||
bool swap_rb;
|
||
|
||
// 模型预测接口,即用户调用的接口
|
||
// im 为用户的输入数据,目前对于CV均定义为cv::Mat
|
||
// result 为模型预测的输出结构体
|
||
bool Predict(cv::Mat* im, MattingResult* result);
|
||
|
||
private:
|
||
// 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
|
||
bool Initialize();
|
||
|
||
// 输入图像预处理操作
|
||
// Mat为FastDeploy定义的数据结构
|
||
// FDTensor为预处理后的Tensor数据,传给后端进行推理
|
||
bool Preprocess(Mat* mat, FDTensor* output,
|
||
std::map<std::string, std::array<int, 2>>* im_info);
|
||
|
||
// 后端推理结果后处理,输出给用户
|
||
// infer_result 为后端推理后的输出Tensor
|
||
// result 为模型预测的结果
|
||
bool Postprocess(std::vector<FDTensor>& infer_result, MattingResult* result,
|
||
const std::map<std::string, std::array<int, 2>>& im_info);
|
||
};
|
||
|
||
} // namespace matting
|
||
} // namespace vision
|
||
} // namespace fastdeploy
|