Files
FastDeploy/fastdeploy/vision/segmentation/ppseg/model.h
huangjianhui 312e1b097d [Other]Refactor PaddleSeg with preprocessor && postprocessor && support batch (#639)
* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-11-28 15:50:12 +08:00

91 lines
3.8 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/segmentation/ppseg/preprocessor.h"
#include "fastdeploy/vision/segmentation/ppseg/postprocessor.h"
namespace fastdeploy {
namespace vision {
/** \brief All segmentation model APIs are defined inside this namespace
*
*/
namespace segmentation {
/*! @brief PaddleSeg serials model object used when to load a PaddleSeg model exported by PaddleSeg repository
*/
class FASTDEPLOY_DECL PaddleSegModel : public FastDeployModel {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g unet/model.pdmodel
* \param[in] params_file Path of parameter file, e.g unet/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g unet/deploy.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
PaddleSegModel(const std::string& model_file, const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
std::string ModelName() const { return "PaddleSeg"; }
/** \brief DEPRECATED Predict the segmentation result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output segmentation result will be writen to this structure
* \return true if the segmentation prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, SegmentationResult* result);
/** \brief Predict the segmentation result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output segmentation result will be writen to this structure
* \return true if the segmentation prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& im, SegmentationResult* result);
/** \brief Predict the segmentation results for a batch of input images
*
* \param[in] imgs, The input image list, each element comes from cv::imread()
* \param[in] results The output segmentation result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<SegmentationResult>* results);
/// Get preprocessor reference of PaddleSegModel
virtual PaddleSegPreprocessor& GetPreprocessor() {
return preprocessor_;
}
/// Get postprocessor reference of PaddleSegModel
virtual PaddleSegPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
bool Initialize();
PaddleSegPreprocessor preprocessor_;
PaddleSegPostprocessor postprocessor_;
};
} // namespace segmentation
} // namespace vision
} // namespace fastdeploy