mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments * support pp_trt for ppseg * fixed symlink problem * Add is_mini_pad and stride for yolov5 * Add yolo series for paddle format * fixed bugs * fixed bug * support yolov5seg * fixed bug * refactor yolov5seg * fixed bug * mv Mask int32 to uint8 * add yolov5seg example * rm log info * fixed code style * add yolov5seg example in python * fixed dtype bug * update note * deal with comments * get sorted index * add yolov5seg test case * Add GPL-3.0 License * add round func * deal with comments * deal with commens Co-authored-by: Jason <jiangjiajun@baidu.com>
57 lines
1.4 KiB
Python
57 lines
1.4 KiB
Python
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
import ast
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model", default=None, help="Path of yolov5seg model.")
|
|
parser.add_argument(
|
|
"--image", default=None, help="Path of test image file.")
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default='cpu',
|
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
|
parser.add_argument(
|
|
"--use_trt",
|
|
type=ast.literal_eval,
|
|
default=False,
|
|
help="Wether to use tensorrt.")
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_option(args):
|
|
option = fd.RuntimeOption()
|
|
if args.device.lower() == "gpu":
|
|
option.use_gpu()
|
|
|
|
if args.use_trt:
|
|
option.use_trt_backend()
|
|
option.set_trt_input_shape("images", [1, 3, 640, 640])
|
|
return option
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
# Configure runtime, load model
|
|
runtime_option = build_option(args)
|
|
model = fd.vision.detection.YOLOv5Seg(
|
|
args.model, runtime_option=runtime_option)
|
|
|
|
# Predicting image
|
|
if args.image is None:
|
|
image = fd.utils.get_detection_test_image()
|
|
else:
|
|
image = args.image
|
|
im = cv2.imread(image)
|
|
result = model.predict(im)
|
|
|
|
# Visualization
|
|
vis_im = fd.vision.vis_detection(im, result)
|
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
|
print("Visualized result save in ./visualized_result.jpg")
|