mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 05:12:24 +08:00
71 lines
2.7 KiB
C++
71 lines
2.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/runtime.h"
|
|
#include <cassert>
|
|
|
|
namespace fd = fastdeploy;
|
|
|
|
int main(int argc, char* argv[]) {
|
|
// Download from https://bj.bcebos.com/paddle2onnx/model_zoo/pplcnet.tar.gz
|
|
std::string model_file = "pplcnet/inference.pdmodel";
|
|
std::string params_file = "pplcnet/inference.pdiparams";
|
|
|
|
// configure runtime
|
|
// How to configure by RuntimeOption, refer its api doc for more information
|
|
// https://baidu-paddle.github.io/fastdeploy-api/cpp/html/structfastdeploy_1_1RuntimeOption.html
|
|
fd::RuntimeOption runtime_option;
|
|
runtime_option.SetModelPath(model_file, params_file);
|
|
runtime_option.UseOpenVINOBackend();
|
|
|
|
// Use CPU to inference
|
|
// If need to configure OpenVINO backend for more option, we can configure runtime_option.openvino_option
|
|
// refer https://baidu-paddle.github.io/fastdeploy-api/cpp/html/structfastdeploy_1_1OpenVINOBackendOption.html
|
|
runtime_option.UseCpu();
|
|
runtime_option.SetCpuThreadNum(12);
|
|
|
|
fd::Runtime runtime;
|
|
assert(runtime.Init(runtime_option));
|
|
|
|
// Get model's inputs information
|
|
// API doc refer https://baidu-paddle.github.io/fastdeploy-api/cpp/html/structfastdeploy_1_1Runtime.html
|
|
std::vector<fd::TensorInfo> inputs_info = runtime.GetInputInfos();
|
|
|
|
// Create dummy data fill with 0.5
|
|
std::vector<float> dummy_data(1 * 3 * 224 * 224, 0.5);
|
|
|
|
// Create inputs/outputs tensors
|
|
std::vector<fd::FDTensor> inputs(inputs_info.size());
|
|
std::vector<fd::FDTensor> outputs;
|
|
|
|
// Initialize input tensors
|
|
// API doc refer https://baidu-paddle.github.io/fastdeploy-api/cpp/html/structfastdeploy_1_1FDTensor.html
|
|
inputs[0].SetData({1, 3, 224, 224}, fd::FDDataType::FP32, dummy_data.data());
|
|
inputs[0].name = inputs_info[0].name;
|
|
|
|
// Inference
|
|
assert(runtime.Infer(inputs, &outputs));
|
|
|
|
// Print debug information of outputs
|
|
outputs[0].PrintInfo();
|
|
|
|
// Get data pointer and print it's elements
|
|
const float* data_ptr = reinterpret_cast<const float*>(outputs[0].GetData());
|
|
for (size_t i = 0; i < 10 && i < outputs[0].Numel(); ++i) {
|
|
std::cout << data_ptr[i] << " ";
|
|
}
|
|
std::cout << std::endl;
|
|
return 0;
|
|
}
|