mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1043 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1043 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import random
 | |
| import time
 | |
| from typing import Dict, List, Optional
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| from paddle import nn
 | |
| 
 | |
| from fastdeploy import envs
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.engine.request import Request, RequestType
 | |
| from fastdeploy.model_executor.forward_meta import ForwardMeta, XPUForwardMeta
 | |
| from fastdeploy.model_executor.graph_optimization.utils import (
 | |
|     profile_run_guard,
 | |
|     sot_warmup_guard,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.attention import get_attention_backend
 | |
| from fastdeploy.model_executor.layers.attention.base_attention_backend import (
 | |
|     AttentionBackend,
 | |
| )
 | |
| from fastdeploy.model_executor.layers.rotary_embedding import get_rope
 | |
| from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
 | |
| from fastdeploy.model_executor.layers.sample.sampler import Sampler
 | |
| from fastdeploy.model_executor.model_loader import get_model_loader
 | |
| from fastdeploy.model_executor.ops.xpu import (
 | |
|     adjust_batch,
 | |
|     get_infer_param,
 | |
|     get_padding_offset,
 | |
|     recover_decode_task,
 | |
|     update_inputs_v1,
 | |
| )
 | |
| from fastdeploy.utils import get_logger
 | |
| from fastdeploy.worker.model_runner_base import ModelRunnerBase
 | |
| from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
 | |
| 
 | |
| logger = get_logger("xpu_model_runner", "xpu_model_runner.log")
 | |
| 
 | |
| 
 | |
| def xpu_pre_process(
 | |
|     input_ids: paddle.Tensor,
 | |
|     seq_lens_this_time: int,
 | |
|     share_inputs: Dict,
 | |
|     use_speculate_method: bool,
 | |
|     draft_tokens: Optional[paddle.Tensor] = None,
 | |
|     seq_lens_encoder: Optional[paddle.Tensor] = None,
 | |
|     seq_lens_decoder: Optional[paddle.Tensor] = None,
 | |
| ) -> XPUForwardMeta:
 | |
|     """ """
 | |
|     max_len = input_ids.shape[1]
 | |
|     cum_offsets_now = paddle.cumsum(max_len - seq_lens_this_time, dtype="int32")
 | |
|     token_num = paddle.sum(seq_lens_this_time)
 | |
| 
 | |
|     (
 | |
|         ids_remove_padding,
 | |
|         cum_offsets,
 | |
|         batch_id_per_token,
 | |
|         cu_seqlens_q,
 | |
|         cu_seqlens_k,
 | |
|     ) = get_padding_offset(input_ids, cum_offsets_now, token_num, seq_lens_this_time)
 | |
| 
 | |
|     share_inputs["ids_remove_padding"] = None  # set this after adjust batch
 | |
|     share_inputs["cum_offsets"] = cum_offsets
 | |
|     share_inputs["batch_id_per_token"] = batch_id_per_token
 | |
|     share_inputs["cu_seqlens_q"] = cu_seqlens_q
 | |
|     share_inputs["cu_seqlens_k"] = cu_seqlens_k
 | |
| 
 | |
|     xpu_forward_meta = XPUForwardMeta(
 | |
|         input_ids=share_inputs["input_ids"],
 | |
|         ids_remove_padding=share_inputs["ids_remove_padding"],
 | |
|         rotary_embs=share_inputs["rope_emb"],
 | |
|         attn_backend=None,
 | |
|         seq_lens_encoder=share_inputs["seq_lens_encoder"],
 | |
|         seq_lens_decoder=share_inputs["seq_lens_decoder"],
 | |
|         seq_lens_this_time=share_inputs["seq_lens_this_time"],
 | |
|         cum_offsets=share_inputs["cum_offsets"],
 | |
|         batch_id_per_token=share_inputs["batch_id_per_token"],
 | |
|         cu_seqlens_q=share_inputs["cu_seqlens_q"],
 | |
|         cu_seqlens_k=share_inputs["cu_seqlens_k"],
 | |
|         block_tables=share_inputs["block_tables"],
 | |
|         caches=share_inputs["caches"],
 | |
|     )
 | |
| 
 | |
|     # Get xpu extra param
 | |
|     (
 | |
|         xpu_forward_meta.encoder_batch_map,
 | |
|         xpu_forward_meta.decoder_batch_map,
 | |
|         xpu_forward_meta.encoder_batch_idx,
 | |
|         xpu_forward_meta.decoder_batch_idx,
 | |
|         xpu_forward_meta.encoder_seq_lod,
 | |
|         xpu_forward_meta.decoder_context_len,
 | |
|         xpu_forward_meta.decoder_context_len_cache,
 | |
|         xpu_forward_meta.encoder_batch_map_cpu,
 | |
|         xpu_forward_meta.decoder_batch_map_cpu,
 | |
|         xpu_forward_meta.encoder_batch_idx_cpu,
 | |
|         xpu_forward_meta.decoder_batch_idx_cpu,
 | |
|         xpu_forward_meta.encoder_seq_lod_cpu,
 | |
|         xpu_forward_meta.decoder_context_len_cpu,
 | |
|         xpu_forward_meta.decoder_context_len_cache_cpu,
 | |
|         xpu_forward_meta.enc_batch,
 | |
|         xpu_forward_meta.dec_batch,
 | |
|         xpu_forward_meta.total_enc_len,
 | |
|     ) = get_infer_param(seq_lens_encoder, seq_lens_decoder)
 | |
| 
 | |
|     # Adjust batch
 | |
|     # print(f"=========================adjust_batch 更新前=========================")
 | |
|     # print(f"ids_remove_padding : {ids_remove_padding}")
 | |
|     # print(f"cum_offsets : {cum_offsets}")
 | |
|     # print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
 | |
|     # print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
 | |
|     # print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
 | |
|     # print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
 | |
|     # print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
 | |
|     # print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
 | |
|     # print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
 | |
|     # print(f"xpu_forward_meta.dec_batch : {xpu_forward_meta.decoder_batch_map}")
 | |
| 
 | |
|     adjusted_input = adjust_batch(
 | |
|         ids_remove_padding.reshape([-1, 1]),
 | |
|         cum_offsets,
 | |
|         xpu_forward_meta.encoder_seq_lod,
 | |
|         xpu_forward_meta.encoder_batch_idx,
 | |
|         xpu_forward_meta.decoder_batch_idx,
 | |
|         xpu_forward_meta.encoder_seq_lod_cpu,
 | |
|         xpu_forward_meta.encoder_batch_idx_cpu,
 | |
|         xpu_forward_meta.decoder_batch_idx_cpu,
 | |
|         xpu_forward_meta.enc_batch,
 | |
|         xpu_forward_meta.dec_batch,
 | |
|         None,  # output_padding_offset
 | |
|         -1,  # max_input_length
 | |
|     )
 | |
|     # print(f"=========================adjust_batch 更新后=========================")
 | |
|     # print(f"ids_remove_padding : {ids_remove_padding}")
 | |
|     # print(f"cum_offsets : {cum_offsets}")
 | |
|     # print(f"xpu_forward_meta.encoder_seq_lod : {xpu_forward_meta.encoder_seq_lod}")
 | |
|     # print(f"xpu_forward_meta.encoder_batch_idx: {xpu_forward_meta.encoder_batch_idx}")
 | |
|     # print(f"xpu_forward_meta.decoder_batch_idx : {xpu_forward_meta.decoder_batch_idx}")
 | |
|     # print(f"xpu_forward_meta.encoder_seq_lod_cpu : {xpu_forward_meta.encoder_seq_lod_cpu}")
 | |
|     # print(f"xpu_forward_meta.encoder_batch_idx_cpu : {xpu_forward_meta.encoder_batch_idx_cpu}")
 | |
|     # print(f"xpu_forward_meta.decoder_batch_idx_cpu : {xpu_forward_meta.decoder_batch_idx_cpu}")
 | |
|     # print(f"xpu_forward_meta.enc_batch : {xpu_forward_meta.encoder_batch_map}")
 | |
| 
 | |
|     adjusted_input = adjusted_input.squeeze(1)
 | |
| 
 | |
|     share_inputs["ids_remove_padding"] = adjusted_input
 | |
|     xpu_forward_meta.ids_remove_padding = adjusted_input
 | |
|     return xpu_forward_meta
 | |
| 
 | |
| 
 | |
| def xpu_process_output(
 | |
|     forward_output,
 | |
|     cum_offsets: paddle.Tensor,
 | |
|     xpu_forward_meta: XPUForwardMeta,
 | |
| ) -> paddle.Tensor:
 | |
|     """ """
 | |
|     from fastdeploy.model_executor.ops.xpu import gather_next_token
 | |
| 
 | |
|     hiddden_states = gather_next_token(
 | |
|         forward_output,
 | |
|         cum_offsets,
 | |
|         xpu_forward_meta.encoder_seq_lod,
 | |
|         xpu_forward_meta.encoder_batch_map,
 | |
|         xpu_forward_meta.decoder_batch_map,
 | |
|         xpu_forward_meta.encoder_seq_lod_cpu,
 | |
|         xpu_forward_meta.encoder_batch_map_cpu,
 | |
|         xpu_forward_meta.decoder_batch_map_cpu,
 | |
|         xpu_forward_meta.enc_batch,
 | |
|         xpu_forward_meta.dec_batch,
 | |
|         None,  # output_padding_offset
 | |
|         -1,  # max_input_length
 | |
|     )
 | |
|     return hiddden_states
 | |
| 
 | |
| 
 | |
| def xpu_post_process(
 | |
|     sampled_token_ids: paddle.Tensor,
 | |
|     model_output: ModelOutputData,
 | |
|     share_inputs: Dict[str, paddle.Tensor],
 | |
|     block_size: int = 64,
 | |
|     skip_save_output: bool = False,
 | |
| ) -> None:
 | |
|     """ """
 | |
|     from fastdeploy.model_executor.ops.xpu import (
 | |
|         save_output,
 | |
|         set_stop_value_multi_ends,
 | |
|         update_inputs,
 | |
|     )
 | |
| 
 | |
|     # 1. Set stop value
 | |
|     paddle.assign(
 | |
|         paddle.where(
 | |
|             model_output.stop_flags,
 | |
|             model_output.step_idx,
 | |
|             model_output.step_idx + 1,
 | |
|         ),
 | |
|         model_output.step_idx,
 | |
|     )
 | |
|     length_cond = paddle.greater_equal(model_output.step_idx, model_output.max_dec_len)
 | |
|     paddle.assign(
 | |
|         paddle.logical_or(model_output.stop_flags, length_cond),
 | |
|         model_output.stop_flags,
 | |
|     )
 | |
|     set_stop_value_multi_ends(
 | |
|         sampled_token_ids,
 | |
|         model_output.stop_flags,
 | |
|         model_output.seq_lens_this_time,
 | |
|         model_output.eos_token_id,
 | |
|         model_output.next_tokens,
 | |
|         False,
 | |
|     )  # multi ends
 | |
| 
 | |
|     # 2. Update the input buffer of the model
 | |
|     with paddle.framework._no_check_dy2st_diff():
 | |
|         if envs.ENABLE_V1_KVCACHE_SCHEDULER and not skip_save_output:
 | |
| 
 | |
|             # print(f"============================================update_inputs_v1 更新前=========================================")
 | |
|             # print(f"model_output.stop_flags : {model_output.stop_flags}")
 | |
|             # print(f"model_output.not_need_stop : {model_output.not_need_stop}")
 | |
|             # print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
 | |
|             # print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
 | |
|             # print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
 | |
|             # print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
 | |
|             # print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
 | |
|             # print(f"sampled_token_ids : {sampled_token_ids}")
 | |
|             # print(f"model_output.input_ids : {model_output.input_ids}")
 | |
|             # print(f"model_output.stop_nums : {model_output.stop_nums}")
 | |
|             # print(f"model_output.next_tokens : {model_output.next_tokens}")
 | |
|             # print(f"model_output.is_block_step : {model_output.is_block_step}")
 | |
|             # print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
 | |
|             # print(f"block_size : {block_size}")
 | |
|             update_inputs_v1(
 | |
|                 model_output.stop_flags,
 | |
|                 model_output.not_need_stop,
 | |
|                 model_output.seq_lens_this_time,
 | |
|                 model_output.seq_lens_encoder,
 | |
|                 model_output.seq_lens_decoder,
 | |
|                 share_inputs["step_seq_lens_decoder"],
 | |
|                 share_inputs["prompt_lens"],
 | |
|                 sampled_token_ids,
 | |
|                 model_output.input_ids,
 | |
|                 share_inputs["block_tables"],
 | |
|                 model_output.stop_nums,
 | |
|                 model_output.next_tokens,
 | |
|                 model_output.is_block_step,
 | |
|                 block_size,
 | |
|             )
 | |
|             # print(f"============================================update_inputs_v1 更新后=========================================")
 | |
|             # print(f"model_output.stop_flags : {model_output.stop_flags}")
 | |
|             # print(f"model_output.not_need_stop : {model_output.not_need_stop}")
 | |
|             # print(f"model_output.seq_lens_this_time : {model_output.seq_lens_this_time}")
 | |
|             # print(f"model_output.seq_lens_encoder : {model_output.seq_lens_encoder}")
 | |
|             # print(f"model_output.seq_lens_decoder : {model_output.seq_lens_decoder}")
 | |
|             # print(f"share_inputs['step_seq_lens_decoder'] : {share_inputs['step_seq_lens_decoder']}")
 | |
|             # print(f"share_inputs['prompt_lens'] : {share_inputs['prompt_lens']}")
 | |
|             # print(f"sampled_token_ids : {sampled_token_ids}")
 | |
|             # print(f"model_output.input_ids : {model_output.input_ids}")
 | |
|             # print(f"model_output.stop_nums : {model_output.stop_nums}")
 | |
|             # print(f"model_output.next_tokens : {model_output.next_tokens}")
 | |
|             # print(f"model_output.is_block_step : {model_output.is_block_step}")
 | |
|             # print(f"share_inputs['block_tables'] : {share_inputs['block_tables']}")
 | |
|             # print(f"block_size : {block_size}")
 | |
|         else:
 | |
|             update_inputs(
 | |
|                 model_output.stop_flags,
 | |
|                 model_output.not_need_stop,
 | |
|                 model_output.seq_lens_this_time,
 | |
|                 model_output.seq_lens_encoder,
 | |
|                 model_output.seq_lens_decoder,
 | |
|                 model_output.input_ids,
 | |
|                 model_output.stop_nums,
 | |
|                 sampled_token_ids,
 | |
|                 model_output.is_block_step,
 | |
|             )
 | |
|     # 3. Transmit the model's output and stop generation signal via message queue.
 | |
|     #    In the future, we will abandon this approach.
 | |
|     if not skip_save_output:
 | |
|         save_output(
 | |
|             sampled_token_ids,
 | |
|             model_output.not_need_stop,
 | |
|             model_output.mp_rank,
 | |
|             False,  # use_ep
 | |
|         )
 | |
| 
 | |
| 
 | |
| def step_paddle(
 | |
|     share_inputs: Dict[str, paddle.Tensor],
 | |
|     block_size: int,
 | |
|     enc_dec_block_num: int,
 | |
| ) -> None:
 | |
|     """
 | |
|     TODO(gongshaotian): normalization name
 | |
|     """
 | |
|     from fastdeploy.model_executor.ops.xpu import step_paddle
 | |
| 
 | |
|     step_paddle(
 | |
|         share_inputs["stop_flags"],
 | |
|         share_inputs["seq_lens_this_time"],
 | |
|         share_inputs["step_seq_lens_encoder"],
 | |
|         share_inputs["seq_lens_encoder"],
 | |
|         share_inputs["seq_lens_decoder"],
 | |
|         share_inputs["block_tables"],
 | |
|         share_inputs["encoder_block_lens"],
 | |
|         share_inputs["is_block_step"],
 | |
|         share_inputs["step_block_list"],
 | |
|         share_inputs["step_lens"],
 | |
|         share_inputs["recover_block_list"],
 | |
|         share_inputs["recover_lens"],
 | |
|         share_inputs["need_block_list"],
 | |
|         share_inputs["need_block_len"],
 | |
|         share_inputs["used_list_len"],
 | |
|         share_inputs["free_list"],
 | |
|         share_inputs["free_list_len"],
 | |
|         share_inputs["input_ids"],
 | |
|         share_inputs["pre_ids"],
 | |
|         share_inputs["step_idx"],
 | |
|         share_inputs["next_tokens"],
 | |
|         share_inputs["first_token_ids"],
 | |
|         block_size,
 | |
|         enc_dec_block_num,
 | |
|     )
 | |
| 
 | |
| 
 | |
| class XPUModelRunner(ModelRunnerBase):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig, device: str, rank: int, local_rank: int):
 | |
|         super().__init__(fd_config=fd_config, device=device)
 | |
|         self.rank = rank
 | |
|         self.local_rank = local_rank
 | |
| 
 | |
|         #  Sampler
 | |
|         self.sampler = Sampler()
 | |
| 
 | |
|         # Lazy initialize kv cache after model loading
 | |
|         # self.kv_caches: list[paddle.Tensor] = []
 | |
| 
 | |
|         # Cuda Graph
 | |
|         self.graph_opt_level = self.graph_opt_config.graph_opt_level
 | |
|         self.use_cudagraph = False
 | |
|         self.sot_warmup_sizes = self.graph_opt_config.sot_warmup_sizes
 | |
|         self.input_ids = paddle.zeros(self.parallel_config.max_num_seqs, dtype="int32")
 | |
| 
 | |
|         # Initialize share inputs
 | |
|         self._init_share_inputs(self.fd_config.parallel_config.max_num_seqs)
 | |
|         self.infer_seed_increment = paddle.full(
 | |
|             shape=[self.parallel_config.max_num_seqs, 1],
 | |
|             fill_value=4,
 | |
|             dtype="int64",
 | |
|         ).cpu()
 | |
| 
 | |
|         # Initialize attention Backend
 | |
|         # Note(gonshaotian): Currently, all attention layers share one attention backend instance.
 | |
|         # In the future, we will expand it as a list.
 | |
|         self.attn_backends: list[AttentionBackend] = []
 | |
| 
 | |
|         self.initialize_attn_backend()
 | |
| 
 | |
|         # Forward meta store the global meta information of the forward
 | |
|         self.forward_meta: ForwardMeta = None
 | |
| 
 | |
|     def insert_tasks_v1(self, req_dicts: List[Request]):
 | |
|         """
 | |
|         Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
 | |
|         """
 | |
|         # NOTE(luotingdan): Lazy initialize kv cache
 | |
|         if "caches" not in self.share_inputs:
 | |
|             self.initialize_kv_cache()
 | |
| 
 | |
|         req_len = len(req_dicts)
 | |
|         has_prefill_task = False
 | |
|         has_decode_task = False
 | |
|         for i in range(req_len):
 | |
|             request = req_dicts[i]
 | |
|             idx = request.idx
 | |
|             if request.task_type.value == RequestType.PREFILL.value:  # prefill task
 | |
|                 logger.debug(f"Handle prefill request {request} at idx {idx}")
 | |
|                 prefill_start_index = request.prefill_start_index
 | |
|                 prefill_end_index = request.prefill_end_index
 | |
|                 length = prefill_end_index - prefill_start_index
 | |
|                 input_ids = request.prompt_token_ids + request.output_token_ids
 | |
|                 logger.debug(
 | |
|                     f"Handle prefill request {request} at idx {idx} prefill_start_index {prefill_start_index} prefill_end_index {prefill_end_index} need_prefilled_token_num {len(input_ids)}"
 | |
|                 )
 | |
|                 self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
 | |
|                     input_ids[prefill_start_index:prefill_end_index]
 | |
|                 )
 | |
|                 encoder_block_num = len(request.block_tables)
 | |
|                 self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
 | |
|                 self.share_inputs["block_tables"][idx : idx + 1, :] = -1
 | |
|                 self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
 | |
|                     request.block_tables, dtype="int32"
 | |
|                 )
 | |
|                 if self.share_inputs["is_block_step"][idx]:  # has tasks to continue to decode
 | |
|                     has_decode_task = True
 | |
|                 self.share_inputs["stop_flags"][idx : idx + 1] = False
 | |
|                 self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
 | |
|                 self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
 | |
|                 self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
 | |
|                 self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
 | |
|                 self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
 | |
|                 self.share_inputs["is_block_step"][idx : idx + 1] = False
 | |
|                 self.share_inputs["step_idx"][idx : idx + 1] = (
 | |
|                     len(request.output_token_ids) if prefill_end_index >= len(input_ids) else 0
 | |
|                 )
 | |
|                 self.share_inputs["pre_ids"][idx : idx + 1] = -1
 | |
|                 has_prefill_task = True
 | |
|             elif request.task_type.value == RequestType.DECODE.value:  # decode task
 | |
|                 logger.debug(f"Handle decode request {request} at idx {idx}")
 | |
|                 encoder_block_num = len(request.block_tables)
 | |
|                 self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
 | |
|                 self.share_inputs["block_tables"][idx : idx + 1, :] = -1
 | |
|                 self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
 | |
|                     request.block_tables, dtype="int32"
 | |
|                 )
 | |
|                 continue
 | |
|             else:  # preempted task
 | |
|                 logger.debug(f"Handle preempted request {request} at idx {idx}")
 | |
|                 self.share_inputs["block_tables"][idx : idx + 1, :] = -1
 | |
|                 self.share_inputs["stop_flags"][idx : idx + 1] = True
 | |
|                 self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 0
 | |
|                 self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
 | |
|                 self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
 | |
|                 self.share_inputs["is_block_step"][idx : idx + 1] = False
 | |
|                 continue
 | |
| 
 | |
|             assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
 | |
|             self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
 | |
| 
 | |
|             self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
 | |
|             self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
 | |
|             self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
 | |
|             self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
 | |
|             self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
 | |
|             self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
 | |
|             self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
 | |
|             self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
 | |
|             self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
 | |
| 
 | |
|             self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
 | |
|             self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
 | |
|                 "max_tokens", self.model_config.max_model_len
 | |
|             )
 | |
| 
 | |
|             self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
 | |
|             self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = length
 | |
| 
 | |
|             if request.get("seed") is not None:
 | |
|                 self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
 | |
| 
 | |
|             if request.get("bad_words_token_ids") is not None and len(request.get("bad_words_token_ids")) > 0:
 | |
|                 bad_words_len = len(request.get("bad_words_token_ids"))
 | |
|                 self.share_inputs["bad_tokens_len"][idx : idx + 1] = bad_words_len
 | |
|                 self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
 | |
|                     request.get("bad_words_token_ids"), dtype="int64"
 | |
|                 )
 | |
|             else:
 | |
|                 self.share_inputs["bad_tokens_len"][idx : idx + 1] = 1
 | |
|                 self.share_inputs["bad_tokens"][idx : idx + 1, :] = np.array([-1], dtype="int64")
 | |
| 
 | |
|             if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
 | |
|                 stop_seqs_num = len(request.get("stop_seqs_len"))
 | |
|                 for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
 | |
|                     request.stop_seqs_len.append(0)
 | |
|                 self.share_inputs["stop_seqs_len"][:] = np.array(request.stop_seqs_len, dtype="int32")
 | |
|                 self.share_inputs["stop_seqs"][:stop_seqs_num, : len(request.get("stop_token_ids")[0])] = np.array(
 | |
|                     request.get("stop_token_ids"), dtype="int64"
 | |
|                 )
 | |
|         if has_prefill_task or has_decode_task:
 | |
|             self.share_inputs["not_need_stop"][0] = True
 | |
| 
 | |
|     def process_prefill_inputs(self, req_dicts: List[Request]):
 | |
|         """Process inputs for prefill tasks and update share_inputs buffer"""
 | |
|         req_len = len(req_dicts)
 | |
|         for i in range(req_len):
 | |
|             request = req_dicts[i]
 | |
|             idx = request.idx
 | |
|             length = request.prompt_token_ids_len
 | |
|             self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
 | |
|             assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
 | |
|             self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
 | |
|             self.share_inputs["pre_ids"][idx : idx + 1] = -1
 | |
|             self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
 | |
|             self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
 | |
|             self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
 | |
|             self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
 | |
|             self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
 | |
|             self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
 | |
|             self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
 | |
|             self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
 | |
|             self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
 | |
|             self.share_inputs["seq_lens_this_time"][idx : idx + 1] = length
 | |
|             self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = length
 | |
|             self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
 | |
|             self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
 | |
|             self.share_inputs["step_idx"][idx : idx + 1] = 0
 | |
|             self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
 | |
| 
 | |
|             self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
 | |
|                 "max_tokens", self.model_config.max_model_len
 | |
|             )
 | |
|             self.share_inputs["stop_flags"][idx : idx + 1] = False
 | |
| 
 | |
|             self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
 | |
|             self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = length
 | |
| 
 | |
|             if request.get("seed") is not None:
 | |
|                 self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
 | |
|             encoder_block_num = len(request.get("block_tables"))
 | |
|             self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
 | |
|             self.share_inputs["block_tables"][idx : idx + 1, :] = -1
 | |
|             self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
 | |
|                 request.block_tables, dtype="int32"
 | |
|             )
 | |
| 
 | |
|             if request.get("bad_words_token_ids") is not None and len(request.get("bad_words_token_ids")) > 0:
 | |
|                 bad_words_len = len(request.get("bad_words_token_ids"))
 | |
|                 self.share_inputs["bad_tokens_len"][idx : idx + 1] = bad_words_len
 | |
|                 self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
 | |
|                     request.get("bad_words_token_ids"), dtype="int64"
 | |
|                 )
 | |
|             else:
 | |
|                 self.share_inputs["bad_tokens_len"][idx : idx + 1] = 1
 | |
|                 self.share_inputs["bad_tokens"][idx : idx + 1, :] = np.array([-1], dtype="int64")
 | |
| 
 | |
|             if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
 | |
|                 stop_seqs_num = len(request.get("stop_seqs_len"))
 | |
|                 for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
 | |
|                     request.stop_seqs_len.append(0)
 | |
|                 self.share_inputs["stop_seqs_len"][:] = np.array(request.stop_seqs_len, dtype="int32")
 | |
|                 self.share_inputs["stop_seqs"][:stop_seqs_num, : len(request.get("stop_token_ids")[0])] = np.array(
 | |
|                     request.get("stop_token_ids"), dtype="int64"
 | |
|                 )
 | |
| 
 | |
|         self.share_inputs["not_need_stop"][0] = True
 | |
| 
 | |
|     def _init_share_inputs(self, max_num_seqs: int):
 | |
|         """Initialize all share buffers for model inputs.
 | |
|         Note: In the future, we may abandon share buffers.
 | |
|         """
 | |
|         self.MAX_INFER_SEED = 9223372036854775806
 | |
|         self.share_inputs = {}
 | |
| 
 | |
|         self.share_inputs["pre_ids"] = paddle.full(
 | |
|             [max_num_seqs, self.parallel_config.max_model_len],
 | |
|             -1,
 | |
|             dtype="int64",
 | |
|         )
 | |
|         self.share_inputs["input_ids"] = paddle.full(
 | |
|             [max_num_seqs, self.parallel_config.max_model_len],
 | |
|             self.model_config.pad_token_id,
 | |
|             dtype="int64",
 | |
|         )
 | |
|         self.share_inputs["eos_token_id"] = paddle.full([self.model_config.eos_tokens_lens, 1], 0, dtype="int64")
 | |
|         self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
 | |
|         self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
 | |
|         self.share_inputs["top_k_list"] = [0] * max_num_seqs
 | |
|         self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
 | |
|         self.share_inputs["min_p_list"] = [0.0] * max_num_seqs
 | |
|         self.share_inputs["temperature"] = paddle.full(
 | |
|             [max_num_seqs, 1], self.model_config.temperature, dtype="float32"
 | |
|         )
 | |
|         self.share_inputs["penalty_score"] = paddle.full(
 | |
|             [max_num_seqs, 1], self.model_config.penalty_score, dtype="float32"
 | |
|         )
 | |
|         self.share_inputs["frequency_score"] = paddle.full(
 | |
|             [max_num_seqs, 1],
 | |
|             self.model_config.frequency_score,
 | |
|             dtype="float32",
 | |
|         )
 | |
|         self.share_inputs["presence_score"] = paddle.full(
 | |
|             [max_num_seqs, 1], self.model_config.presence_score, dtype="float32"
 | |
|         )
 | |
| 
 | |
|         self.share_inputs["min_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
 | |
|         self.share_inputs["max_dec_len"] = paddle.full(
 | |
|             [max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
 | |
|         )
 | |
|         self.share_inputs["min_length"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
 | |
|         self.share_inputs["max_length"] = paddle.full(
 | |
|             [max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
 | |
|         )
 | |
|         self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs, 0, dtype="int32")
 | |
|         self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
 | |
|         self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
 | |
|         self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
 | |
|         self.share_inputs["step_seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
 | |
|         self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
 | |
|         self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
 | |
|         self.share_inputs["not_need_stop"] = paddle.full(
 | |
|             [1], False, dtype="bool"
 | |
|         ).cpu()  # TODO(gongshaotian): move to pinnd memory
 | |
|         self.share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1], True, dtype="bool")
 | |
|         self.share_inputs["stop_nums"] = paddle.full([1], max_num_seqs, dtype="int64")
 | |
| 
 | |
|         self.share_inputs["bad_tokens"] = paddle.full([max_num_seqs, self.model_config.vocab_size], -1, dtype="int64")
 | |
|         self.share_inputs["bad_tokens_len"] = paddle.full([max_num_seqs], 1, dtype="int64")
 | |
|         self.share_inputs["next_tokens"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
 | |
|         self.share_inputs["is_block_step"] = paddle.full([max_num_seqs], False, dtype="bool")
 | |
|         self.share_inputs["encoder_block_lens"] = paddle.full([max_num_seqs], 0, dtype="int32")
 | |
|         self.share_inputs["step_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
 | |
|         self.share_inputs["step_lens"] = paddle.full([1], 0, dtype="int32")
 | |
|         self.share_inputs["recover_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
 | |
|         self.share_inputs["recover_lens"] = paddle.full([1], 0, dtype="int32")
 | |
|         self.share_inputs["need_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
 | |
|         self.share_inputs["need_block_len"] = paddle.full([1], 0, dtype="int32")
 | |
|         self.share_inputs["used_list_len"] = paddle.full([max_num_seqs], 0, dtype="int32")
 | |
|         self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
 | |
|         self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
 | |
|         self.share_inputs["ori_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
 | |
|         self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
 | |
|         self.share_inputs["system_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int32")
 | |
| 
 | |
|         # Initialize rotary position embedding
 | |
|         tmp_position_ids = paddle.arange(self.parallel_config.max_model_len).reshape((1, -1))
 | |
|         # TODO(gongshaotian): move to models
 | |
|         self.share_inputs["rope_emb"] = get_rope(
 | |
|             rotary_dim=self.model_config.head_dim,
 | |
|             position_ids=tmp_position_ids,
 | |
|             base=self.model_config.rope_theta,
 | |
|             model_config=self.model_config,
 | |
|         )
 | |
| 
 | |
|         # Set block tables
 | |
|         pre_max_block_num = (
 | |
|             self.parallel_config.max_model_len + self.cache_config.block_size - 1
 | |
|         ) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
 | |
|         self.share_inputs["block_tables"] = paddle.full([max_num_seqs, pre_max_block_num], -1, dtype="int32")
 | |
| 
 | |
|         # Initialize free list
 | |
|         free_list = list(
 | |
|             range(
 | |
|                 self.parallel_config.total_block_num - 1,
 | |
|                 int(self.parallel_config.total_block_num * self.cache_config.kv_cache_ratio) - 1,
 | |
|                 -1,
 | |
|             )
 | |
|         )
 | |
|         self.free_list_len = len(free_list)
 | |
|         self.share_inputs["free_list"] = paddle.to_tensor(free_list, dtype="int32")
 | |
|         self.share_inputs["free_list_len"] = paddle.full([1], self.free_list_len, dtype="int32")
 | |
| 
 | |
|         # Initialize stop seqs
 | |
|         self.share_inputs["stop_seqs_len"] = paddle.full([self.model_config.max_stop_seqs_num], 0, dtype="int32")
 | |
|         self.share_inputs["stop_seqs"] = paddle.full(
 | |
|             [
 | |
|                 self.model_config.max_stop_seqs_num,
 | |
|                 self.model_config.stop_seqs_max_len,
 | |
|             ],
 | |
|             -1,
 | |
|             dtype="int32",
 | |
|         )
 | |
| 
 | |
|     def _prepare_inputs(self, is_dummy_run=False) -> None:
 | |
|         """prepare the model inputs"""
 | |
|         if envs.ENABLE_V1_KVCACHE_SCHEDULER and not is_dummy_run:
 | |
|             recover_decode_task(
 | |
|                 self.share_inputs["stop_flags"],
 | |
|                 self.share_inputs["seq_lens_this_time"],
 | |
|                 self.share_inputs["seq_lens_encoder"],
 | |
|                 self.share_inputs["seq_lens_decoder"],
 | |
|                 self.share_inputs["step_seq_lens_decoder"],
 | |
|                 self.share_inputs["block_tables"],
 | |
|                 self.share_inputs["is_block_step"],
 | |
|                 self.parallel_config.block_size,
 | |
|             )
 | |
|         self.forward_meta = xpu_pre_process(
 | |
|             self.share_inputs["input_ids"],
 | |
|             self.share_inputs["seq_lens_this_time"],
 | |
|             self.share_inputs,
 | |
|             use_speculate_method=False,
 | |
|             draft_tokens=None,
 | |
|             seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
 | |
|             seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
 | |
|         )
 | |
|         # Update bad tokens len
 | |
|         max_bad_tokens_len = paddle.max(self.share_inputs["bad_tokens_len"])
 | |
| 
 | |
|         self.forward_meta.attn_backend = self.attn_backends[0]
 | |
|         self.initialize_attention_backend()
 | |
| 
 | |
|         # Get sampling metadata
 | |
|         self.sampling_metadata = SamplingMetadata(
 | |
|             temperature=self.share_inputs["temperature"],
 | |
|             top_p=self.share_inputs["top_p"],
 | |
|             top_k=self.share_inputs["top_k"],
 | |
|             top_k_list=self.share_inputs["top_k_list"],
 | |
|             min_p=self.share_inputs["min_p"],
 | |
|             min_p_list=self.share_inputs["min_p_list"],
 | |
|             seed=self.share_inputs["infer_seed"],
 | |
|             step_idx=self.share_inputs["step_idx"],
 | |
|             pre_token_ids=self.share_inputs["pre_ids"],
 | |
|             frequency_penalties=self.share_inputs["frequency_score"],
 | |
|             presence_penalties=self.share_inputs["presence_score"],
 | |
|             repetition_penalties=self.share_inputs["penalty_score"],
 | |
|             min_dec_lens=self.share_inputs["min_dec_len"],
 | |
|             bad_words_token_ids=self.share_inputs["bad_tokens"][:, :max_bad_tokens_len],
 | |
|             eos_token_ids=self.share_inputs["eos_token_id"],
 | |
|         )
 | |
| 
 | |
|     def load_model(self) -> None:
 | |
|         """load or download model"""
 | |
|         logger.info(f"Starting to load model {self.model_config.architectures[0]}")
 | |
|         # 1. Load original model
 | |
|         model_loader = get_model_loader(load_config=self.fd_config.load_config)
 | |
|         self.model = model_loader.load_model(fd_config=self.fd_config)
 | |
| 
 | |
|         # 2. Load lora model
 | |
| 
 | |
|         # 3. Load drafter model(for speculative decoding)
 | |
| 
 | |
|     def get_model(self) -> nn.Layer:
 | |
|         """get current model"""
 | |
|         return self.model
 | |
| 
 | |
|     def initialize_attention_backend(self):
 | |
|         """
 | |
|         Initialize attention meta data
 | |
|         """
 | |
|         # Initialzie attention meta data
 | |
|         for attn_backend in self.attn_backends:
 | |
|             attn_backend.init_attention_metadata(self.forward_meta)
 | |
| 
 | |
|     def initialize_kv_cache(self) -> None:
 | |
|         """
 | |
|         Initialize kv cache
 | |
|         """
 | |
|         cache_kvs = {}
 | |
|         max_block_num = self.num_gpu_blocks
 | |
| 
 | |
|         cache_type = self.parallel_config.dtype
 | |
| 
 | |
|         kv_cache_quant_type = None
 | |
|         if (
 | |
|             self.quant_config
 | |
|             and hasattr(self.quant_config, "kv_cache_quant_type")
 | |
|             and self.quant_config.kv_cache_quant_type is not None
 | |
|         ):
 | |
|             cache_type = "uint8"
 | |
|             kv_cache_quant_type = self.quant_config.kv_cache_quant_type
 | |
| 
 | |
|         # Get kv cache shape
 | |
|         kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
 | |
|             max_num_blocks=max_block_num, kv_cache_quant_type=kv_cache_quant_type
 | |
|         )
 | |
| 
 | |
|         for i in range(self.model_config.num_hidden_layers):
 | |
|             cache_kvs[f"key_caches_{i}"] = paddle.full(
 | |
|                 shape=kv_cache_shape,
 | |
|                 fill_value=0,
 | |
|                 dtype=cache_type,
 | |
|             )
 | |
|             cache_kvs[f"value_caches_{i}"] = paddle.full(
 | |
|                 shape=kv_cache_shape,
 | |
|                 fill_value=0,
 | |
|                 dtype=cache_type,
 | |
|             )
 | |
|         self.share_inputs["caches"] = list(cache_kvs.values())
 | |
|         for value in cache_kvs.values():
 | |
|             del value
 | |
|         paddle.device.xpu.empty_cache()
 | |
| 
 | |
|     def initialize_attn_backend(self) -> None:
 | |
|         """
 | |
|         Initialize attention backends and forward metadata
 | |
|         """
 | |
|         assert len(self.attn_backends) == 0
 | |
| 
 | |
|         # TODO(gongshaotian): Get rank from config
 | |
|         num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
 | |
|         self.model_config.kv_num_heads = (
 | |
|             int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size
 | |
|         )
 | |
|         head_dim = self.model_config.head_dim
 | |
| 
 | |
|         # Get the attention backend
 | |
|         attn_cls = get_attention_backend()
 | |
|         attn_backend = attn_cls(
 | |
|             self.fd_config,
 | |
|             kv_num_heads=self.model_config.kv_num_heads,
 | |
|             num_heads=num_heads,
 | |
|             head_dim=head_dim,
 | |
|         )
 | |
|         if attn_backend is None:
 | |
|             raise NotImplementedError(
 | |
|                 "Attention backend which you specified is not supported, please set FD_ATTENTION_BACKEND correctly."
 | |
|             )
 | |
|         self.attn_backends.append(attn_backend)
 | |
| 
 | |
|     def capture_model(self) -> None:
 | |
|         """
 | |
|         Trigger CUDA Graph capture for all shapes in 'CudaGraphConfig.cudagraph_capture_sizes'
 | |
|         """
 | |
|         logger.warn("XPU not support cuda graph currently")
 | |
|         pass
 | |
| 
 | |
|     @sot_warmup_guard(True)
 | |
|     def sot_warmup(self) -> None:
 | |
|         start_time = time.perf_counter()
 | |
|         for batch_size in self.sot_warmup_sizes:
 | |
|             self._dummy_run(
 | |
|                 num_tokens=self.parallel_config.max_num_batched_tokens,
 | |
|                 batch_size=batch_size,
 | |
|             )
 | |
|             logger.info(f"SOT warmup the model with the batch size:{batch_size}")
 | |
|         logger.info(f"SOT warmup took {time.perf_counter() - start_time} seconds")
 | |
| 
 | |
|     def exist_prefill(self):
 | |
|         """
 | |
|         check whether prefill stage exist
 | |
|         """
 | |
|         if int(paddle.max(self.share_inputs["seq_lens_encoder"])) != 0:
 | |
|             return 1
 | |
|         else:
 | |
|             return 0
 | |
| 
 | |
|     def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int):
 | |
|         """Set dummy prefill inputs to share_inputs"""
 | |
|         full_length = min(num_tokens // batch_size, self.parallel_config.max_model_len - 10)
 | |
|         input_length = int(full_length - 512)
 | |
|         block_num = (
 | |
|             input_length + self.cache_config.block_size - 1
 | |
|         ) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
 | |
| 
 | |
|         for i in range(batch_size):
 | |
|             idx = i
 | |
|             self.share_inputs["input_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
 | |
| 
 | |
|             self.share_inputs["eos_token_id"][:] = np.array([2], dtype="int64").reshape(-1, 1)
 | |
|             self.share_inputs["seq_lens_this_time"][idx : idx + 1] = input_length
 | |
| 
 | |
|             self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = input_length
 | |
|             self.share_inputs["seq_lens_encoder"][idx : idx + 1] = input_length
 | |
|             self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
 | |
|             self.share_inputs["step_idx"][idx : idx + 1] = 0
 | |
|             self.share_inputs["max_dec_len"][idx : idx + 1] = 10
 | |
|             self.share_inputs["stop_flags"][idx : idx + 1] = False
 | |
| 
 | |
|             self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
 | |
|             self.share_inputs["ori_seq_lens_encoder"][idx : idx + 1] = input_length
 | |
| 
 | |
|             self.share_inputs["infer_seed"][idx : idx + 1] = random.randint(0, 922337203685477580)
 | |
|             self.share_inputs["encoder_block_lens"][idx : idx + 1] = block_num
 | |
|             self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(
 | |
|                 idx * block_num, (idx + 1) * block_num, 1
 | |
|             )
 | |
| 
 | |
|     def _dummy_run(
 | |
|         self,
 | |
|         num_tokens: paddle.Tensor,
 | |
|         batch_size: paddle.Tensor,
 | |
|         in_capturing: bool = False,
 | |
|     ) -> paddle.Tensor:
 | |
|         """
 | |
|         Use dummy inputs to run before formal execution.
 | |
|         Args:
 | |
|             num_tokens: Expected number of tokens generated
 | |
|         """
 | |
|         self._dummy_prefill_inputs(num_tokens, batch_size)
 | |
| 
 | |
|         while True:
 | |
|             self.execute_model(None, True)
 | |
| 
 | |
|             if int((self.share_inputs["seq_lens_this_time"] > 0).sum()) == 0:
 | |
|                 break
 | |
| 
 | |
|     def execute_model(
 | |
|         self,
 | |
|         model_forward_batch: Optional[List[Request]] = None,
 | |
|         is_dummy_run: bool = False,
 | |
|         num_running_requests: int = None,
 | |
|     ) -> Optional[ModelRunnerOutput]:
 | |
|         """
 | |
|         The Entrance of model execute.
 | |
|         Args:
 | |
|             model_forward_batch: 'Request' contains information related to prompt and is an abstract
 | |
|             class at the server level, which is too granular for ModelRunner.
 | |
|             We plan to replace it with 'ModelForwardBatch'.
 | |
|             num_running_requests: batch_size
 | |
|             intermediate_tensors:
 | |
|         """
 | |
|         # 1. Prepare inputs of model and decoder.
 | |
|         self._prepare_inputs(is_dummy_run=is_dummy_run)
 | |
| 
 | |
|         # 2. Padding inputs for cuda grph
 | |
| 
 | |
|         # 3. Execute model
 | |
|         model_output = self.model(self.share_inputs["ids_remove_padding"], self.forward_meta)
 | |
| 
 | |
|         hiddden_states = xpu_process_output(model_output, self.share_inputs["cum_offsets"], self.forward_meta)
 | |
| 
 | |
|         # 4. Compute logits, Sample
 | |
|         logits = self.model.compute_logits(hiddden_states)
 | |
| 
 | |
|         sampler_output = self.sampler(logits, self.sampling_metadata)
 | |
| 
 | |
|         # 5. Speculative decode
 | |
| 
 | |
|         # 6. Post Process
 | |
|         model_output_data = ModelOutputData(
 | |
|             next_tokens=self.share_inputs["next_tokens"],
 | |
|             stop_flags=self.share_inputs["stop_flags"],
 | |
|             step_idx=self.share_inputs["step_idx"],
 | |
|             max_dec_len=self.share_inputs["max_dec_len"],
 | |
|             pre_ids=self.share_inputs["pre_ids"],
 | |
|             seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
 | |
|             eos_token_id=self.share_inputs["eos_token_id"],
 | |
|             not_need_stop=self.share_inputs["not_need_stop"],
 | |
|             input_ids=self.share_inputs["input_ids"],
 | |
|             stop_nums=self.share_inputs["stop_nums"],
 | |
|             seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
 | |
|             seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
 | |
|             is_block_step=self.share_inputs["is_block_step"],
 | |
|             msg_queue_id=self.parallel_config.msg_queue_id,
 | |
|             mp_rank=self.local_rank,
 | |
|             use_ep=self.parallel_config.use_ep,
 | |
|             # 投机解码
 | |
|             full_hidden_states=None,
 | |
|             draft_tokens=None,
 | |
|             actual_draft_token_num=None,
 | |
|             accept_tokens=None,
 | |
|             accept_num=None,
 | |
|         )
 | |
|         xpu_post_process(
 | |
|             sampled_token_ids=sampler_output.sampled_token_ids,
 | |
|             model_output=model_output_data,
 | |
|             share_inputs=self.share_inputs,
 | |
|             block_size=self.parallel_config.block_size,
 | |
|             skip_save_output=is_dummy_run,
 | |
|         )
 | |
| 
 | |
|         # 7. Updata 'infer_seed' and step_paddle()
 | |
|         self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
 | |
|         self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
 | |
|         step_paddle(
 | |
|             self.share_inputs,
 | |
|             self.cache_config.block_size,
 | |
|             self.cache_config.enc_dec_block_num,
 | |
|         )
 | |
| 
 | |
|         return None
 | |
| 
 | |
|     def prepare_profile(self) -> None:
 | |
|         """Prepare the profile run by setting the block number and initializing the KV cache."""
 | |
|         paddle.device.xpu.empty_cache()
 | |
|         self.num_gpu_blocks = self.parallel_config.total_block_num
 | |
|         self.initialize_kv_cache()
 | |
| 
 | |
|     @profile_run_guard(True)
 | |
|     def profile_run(self) -> None:
 | |
|         """Execute a forward pass with dummy inputs to profile the memory usage of the model."""
 | |
| 
 | |
|         self._dummy_run(
 | |
|             num_tokens=int(self.parallel_config.max_num_batched_tokens),
 | |
|             batch_size=min(self.parallel_config.max_num_seqs, 1),
 | |
|         )
 | |
| 
 | |
|     def clear_block_table(self) -> None:
 | |
|         """
 | |
|         Clear the block tables and kv cache after profiling.
 | |
|         """
 | |
|         del self.share_inputs["caches"]
 | |
|         if self.forward_meta is not None:
 | |
|             del self.forward_meta.caches
 | |
|         paddle.device.xpu.empty_cache()
 | |
| 
 | |
|     def cal_theortical_kvcache(self):
 | |
|         """
 | |
|         Calculate the total block memory required at the model level
 | |
|         TODO(gongshaotian): Move to Attention Backend
 | |
|         """
 | |
|         """
 | |
|         Byte of dtype:
 | |
|         - default(bf16): 2
 | |
|         - cache_int8: 1
 | |
|         - cache_int4:
 | |
|         """
 | |
|         cache_quant_dtype = None
 | |
|         if (
 | |
|             self.quant_config
 | |
|             and hasattr(self.quant_config, "kv_cache_quant_type")
 | |
|             and self.quant_config.kv_cache_quant_type is not None
 | |
|         ):
 | |
|             cache_quant_dtype = self.quant_config.kv_cache_quant_type
 | |
| 
 | |
|         if cache_quant_dtype is not None:  # int8, int8_zp, fp8, fp8_zp
 | |
|             byte_of_dtype = 1
 | |
|         else:  # default
 | |
|             byte_of_dtype = 2
 | |
| 
 | |
|         hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
 | |
|         required_memory = (
 | |
|             byte_of_dtype
 | |
|             * 2  # k + v
 | |
|             * (self.cache_config.block_size * hidden_dim)
 | |
|             * self.model_config.num_hidden_layers
 | |
|         )
 | |
|         return required_memory
 | |
| 
 | |
|     def update_share_input_block_num(self, num_gpu_blocks: int) -> None:
 | |
|         """
 | |
|         Set a globally unified block number and update the model's shared input.
 | |
|         Args:
 | |
|             num_gpu_blocks:
 | |
|         """
 | |
|         self.num_gpu_blocks = num_gpu_blocks
 | |
| 
 | |
|         # Reset block table and kv cache with global block num
 | |
|         self.initialize_kv_cache()
 | |
| 
 | |
|         # Reset free list
 | |
|         free_list = list(
 | |
|             range(
 | |
|                 self.num_gpu_blocks - 1,
 | |
|                 int(self.num_gpu_blocks * self.cache_config.kv_cache_ratio) - 1,
 | |
|                 -1,
 | |
|             )
 | |
|         )
 | |
|         self.free_list_len = len(free_list)
 | |
|         self.share_inputs.update(
 | |
|             {
 | |
|                 "free_list": paddle.to_tensor(free_list, dtype="int32"),
 | |
|                 "free_list_len": paddle.full([1], self.free_list_len, dtype="int32"),
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     def not_need_stop(self) -> bool:
 | |
|         """ """
 | |
|         return self.share_inputs["not_need_stop"][0]
 | 
