mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			147 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import gc
 | |
| import time
 | |
| 
 | |
| import paddle
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.utils import get_logger, set_random_seed
 | |
| from fastdeploy.worker.dcu_model_runner import DCUModelRunner
 | |
| from fastdeploy.worker.gpu_worker import GpuWorker
 | |
| 
 | |
| logger = get_logger("dcu_worker", "dcu_worker.log")
 | |
| 
 | |
| 
 | |
| class DcuWorker(GpuWorker):
 | |
|     """ """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         local_rank: int,
 | |
|         rank: int,
 | |
|     ):
 | |
|         super().__init__(
 | |
|             fd_config=fd_config,
 | |
|             local_rank=local_rank,
 | |
|             rank=rank,
 | |
|         )
 | |
|         pass
 | |
| 
 | |
|     def init_device(self):
 | |
|         """
 | |
|         Initialize device and construct model runner
 | |
|         """
 | |
|         self.max_chips_per_node = 8
 | |
|         if self.device_config.device_type == "cuda" and paddle.device.is_compiled_with_cuda():
 | |
|             # Set evironment variable
 | |
|             self.device_ids = self.parallel_config.device_ids.split(",")
 | |
|             self.device = f"gpu:{self.local_rank % self.max_chips_per_node}"
 | |
|             paddle.device.set_device(self.device)
 | |
|             paddle.set_default_dtype(self.parallel_config.dtype)
 | |
| 
 | |
|             gc.collect()
 | |
|             paddle.device.cuda.empty_cache()
 | |
|             if (
 | |
|                 self.parallel_config.enable_custom_all_reduce
 | |
|                 and self.parallel_config.tensor_parallel_size > 1
 | |
|                 and paddle.is_compiled_with_cuda()
 | |
|             ):
 | |
|                 from fastdeploy.distributed.communication import use_custom_allreduce
 | |
| 
 | |
|                 use_custom_allreduce()
 | |
|         else:
 | |
|             raise RuntimeError(f"Not support device type: {self.device_config.device}")
 | |
| 
 | |
|         set_random_seed(self.fd_config.model_config.seed)
 | |
|         # Construct model runner
 | |
|         self.model_runner: DCUModelRunner = DCUModelRunner(
 | |
|             fd_config=self.fd_config,
 | |
|             device=self.device,
 | |
|             device_id=self.device_ids[self.local_rank % self.max_chips_per_node],
 | |
|             rank=self.rank,
 | |
|             local_rank=self.local_rank,
 | |
|         )
 | |
| 
 | |
|     def determine_available_memory(self) -> int:
 | |
|         """
 | |
|         Profiles the peak memory usage of the model to determine how much
 | |
|         memory can be used for KV cache without OOMs.
 | |
| 
 | |
|         The engine will first conduct a profiling of the existing memory usage.
 | |
|         Then, it calculate the maximum possible number of GPU and CPU blocks
 | |
|         that can be allocated with the remaining free memory.
 | |
| 
 | |
|         Tip:
 | |
|             You may limit the usage of GPU memory
 | |
|             by adjusting the `gpu_memory_utilization` parameter.
 | |
|         """
 | |
|         # 1. Record memory state before profile run
 | |
|         Gb = 1024**3
 | |
|         start_time = time.perf_counter()
 | |
|         paddle.device.cuda.reset_max_memory_reserved(self.local_rank)
 | |
|         paddle.device.cuda.reset_max_memory_allocated(self.local_rank)
 | |
|         paddle_reserved_mem_before_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
 | |
|         paddle_allocated_mem_before_run = paddle.device.cuda.max_memory_allocated(self.local_rank)  # not reserved
 | |
| 
 | |
|         total_gpu_memory = paddle.device.cuda.get_device_properties(self.local_rank).total_memory
 | |
|         before_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
 | |
| 
 | |
|         logger.info(
 | |
|             (
 | |
|                 "Before running the profile, the memory usage info is as follows:",
 | |
|                 f"\nDevice Total memory: {total_gpu_memory / Gb}",
 | |
|                 f"\nDevice used memory: {before_used_gpu_memory / Gb}",
 | |
|                 f"\nPaddle reserved memory: {paddle_reserved_mem_before_run / Gb}",
 | |
|                 f"\nPaddle allocated memory: {paddle_allocated_mem_before_run / Gb}",
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         # 2. Profile run
 | |
|         self.model_runner.profile_run()
 | |
| 
 | |
|         # 3. Statistical memory information
 | |
|         paddle_reserved_mem_after_run = paddle.device.cuda.max_memory_reserved(self.local_rank)
 | |
|         paddle_allocated_mem_after_run = paddle.device.cuda.max_memory_allocated(self.local_rank)
 | |
| 
 | |
|         after_used_gpu_memory = paddle.device.cuda.memory_allocated(self.local_rank)
 | |
| 
 | |
|         # v0 worker
 | |
|         model_block_memory_used = self.cal_theortical_kvcache()
 | |
|         paddle.device.cuda.empty_cache()
 | |
|         paddle_peak_increase = paddle_reserved_mem_after_run - paddle_allocated_mem_before_run
 | |
|         available_kv_cache_memory = (
 | |
|             total_gpu_memory * self.cache_config.gpu_memory_utilization - after_used_gpu_memory - paddle_peak_increase
 | |
|         )
 | |
|         available_kv_cache_memory += model_block_memory_used * self.parallel_config.total_block_num
 | |
| 
 | |
|         end_time = time.perf_counter()
 | |
|         logger.info(
 | |
|             (
 | |
|                 "After running the profile, the memory usage info is as follows:",
 | |
|                 f"\nDevice Total memory: {total_gpu_memory / Gb}",
 | |
|                 f"\nDevice used memory: {after_used_gpu_memory / Gb}",
 | |
|                 f"\nPaddle reserved memory: {paddle_reserved_mem_after_run / Gb}",
 | |
|                 f"\nPaddle allocated memory: {paddle_allocated_mem_after_run / Gb}",
 | |
|                 f"\nAvailable KV Cache meomory: {available_kv_cache_memory / Gb}",
 | |
|                 f"Profile time: {end_time - start_time}",
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         return available_kv_cache_memory  # return to caculate the block num in this device
 | 
