mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00
163 lines
5.6 KiB
C++
Executable File
163 lines
5.6 KiB
C++
Executable File
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <unordered_map>
|
|
#include "gflags/gflags.h"
|
|
#include "fastdeploy/benchmark/utils.h"
|
|
#include <sys/types.h>
|
|
#include <dirent.h>
|
|
#include <cstring>
|
|
|
|
#ifdef WIN32
|
|
static const char sep = '\\';
|
|
#else
|
|
static const char sep = '/';
|
|
#endif
|
|
|
|
DEFINE_string(model, "", "Directory of the inference model.");
|
|
DEFINE_string(image, "", "Path of the image file.");
|
|
DEFINE_string(config_path, "config.txt", "Path of benchmark config.");
|
|
DEFINE_int32(warmup, -1, "Number of warmup for profiling.");
|
|
DEFINE_int32(repeat, -1, "Number of repeats for profiling.");
|
|
DEFINE_int32(xpu_l3_cache, -1, "Size xpu l3 cache for profiling.");
|
|
|
|
static void PrintUsage() {
|
|
std::cout << "Usage: infer_demo --model model_path --image img_path "
|
|
"--config_path config.txt[Path of benchmark config.] "
|
|
<< std::endl;
|
|
std::cout << "Default value of device: cpu" << std::endl;
|
|
std::cout << "Default value of backend: default" << std::endl;
|
|
std::cout << "Default value of use_fp16: false" << std::endl;
|
|
}
|
|
|
|
static void PrintBenchmarkInfo(std::unordered_map<std::string,
|
|
std::string> config_info) {
|
|
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
|
|
// Get model name
|
|
std::vector<std::string> model_names;
|
|
fastdeploy::benchmark::Split(FLAGS_model, model_names, sep);
|
|
if (model_names.empty()) {
|
|
std::cout << "Directory of the inference model is invalid!!!" << std::endl;
|
|
return;
|
|
}
|
|
// Save benchmark info
|
|
int warmup = std::stoi(config_info["warmup"]);
|
|
int repeat = std::stoi(config_info["repeat"]);
|
|
if (FLAGS_warmup != -1) {
|
|
warmup = FLAGS_warmup;
|
|
}
|
|
if (FLAGS_repeat != -1) {
|
|
repeat = FLAGS_repeat;
|
|
}
|
|
std::stringstream ss;
|
|
ss.precision(3);
|
|
ss << "\n======= Model Info =======\n";
|
|
ss << "model_name: " << model_names[model_names.size() - 1] << std::endl;
|
|
ss << "profile_mode: " << config_info["profile_mode"] << std::endl;
|
|
if (config_info["profile_mode"] == "runtime") {
|
|
ss << "include_h2d_d2h: " << config_info["include_h2d_d2h"] << std::endl;
|
|
}
|
|
ss << "\n======= Backend Info =======\n";
|
|
ss << "warmup: " << warmup << std::endl;
|
|
ss << "repeats: " << repeat << std::endl;
|
|
ss << "device: " << config_info["device"] << std::endl;
|
|
if (config_info["device"] == "gpu") {
|
|
ss << "device_id: " << config_info["device_id"] << std::endl;
|
|
}
|
|
ss << "use_fp16: " << config_info["use_fp16"] << std::endl;
|
|
ss << "backend: " << config_info["backend"] << std::endl;
|
|
if (config_info["device"] == "cpu") {
|
|
ss << "cpu_thread_nums: " << config_info["cpu_thread_nums"] << std::endl;
|
|
}
|
|
ss << "collect_memory_info: "
|
|
<< config_info["collect_memory_info"] << std::endl;
|
|
if (config_info["collect_memory_info"] == "true") {
|
|
ss << "sampling_interval: " << config_info["sampling_interval"]
|
|
<< "ms" << std::endl;
|
|
}
|
|
std::cout << ss.str() << std::endl;
|
|
// Save benchmark info
|
|
fastdeploy::benchmark::ResultManager::SaveBenchmarkResult(ss.str(),
|
|
config_info["result_path"]);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static bool GetModelResoucesNameFromDir(
|
|
const std::string& path, std::string* resource_name,
|
|
const std::string& suffix = "pdmodel") {
|
|
DIR *p_dir;
|
|
struct dirent *ptr;
|
|
if (!(p_dir = opendir(path.c_str()))) {
|
|
return false;
|
|
}
|
|
bool find = false;
|
|
while ((ptr = readdir(p_dir)) != 0) {
|
|
if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
|
|
std::string tmp_file_name = ptr->d_name;
|
|
if (tmp_file_name.find(suffix) != std::string::npos) {
|
|
if (suffix == "pdiparams") {
|
|
if (tmp_file_name.find("info") == std::string::npos) {
|
|
find = true;
|
|
*resource_name = tmp_file_name;
|
|
break;
|
|
}
|
|
} else {
|
|
find = true;
|
|
*resource_name = tmp_file_name;
|
|
break;
|
|
}
|
|
} else {
|
|
if (suffix == "yml") {
|
|
if (tmp_file_name.find("yaml") != std::string::npos) {
|
|
find = true;
|
|
*resource_name = tmp_file_name;
|
|
break;
|
|
}
|
|
} else if (suffix == "yaml") {
|
|
if (tmp_file_name.find("yml") != std::string::npos) {
|
|
find = true;
|
|
*resource_name = tmp_file_name;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
closedir(p_dir);
|
|
return find;
|
|
}
|
|
|
|
static bool UpdateModelResourceName(
|
|
std::string* model_name, std::string* params_name,
|
|
std::string* config_name, fastdeploy::ModelFormat* model_format,
|
|
std::unordered_map<std::string, std::string>& config_info,
|
|
bool use_config_file = true, bool use_quant_model = false) {
|
|
*model_format = fastdeploy::ModelFormat::PADDLE;
|
|
if (!(GetModelResoucesNameFromDir(FLAGS_model, model_name, "pdmodel")
|
|
&& GetModelResoucesNameFromDir(FLAGS_model, params_name, "pdiparams"))) {
|
|
std::cout << "Can not find Paddle model resources." << std::endl;
|
|
return false;
|
|
}
|
|
if (use_config_file) {
|
|
if (!GetModelResoucesNameFromDir(FLAGS_model, config_name, "yml")) {
|
|
std::cout << "Can not find config yaml resources." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|