Files
FastDeploy/fastdeploy/model_executor/layers/moe/moe.py

700 lines
29 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy import envs
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
from fastdeploy.model_executor.layers.utils import get_tensor
from fastdeploy.model_executor.utils import h2d_copy, slice_fn
from fastdeploy.platforms import current_platform
from fastdeploy.worker.experts_manager import RedundantExpertManger
try:
from fastdeploy.model_executor.ops.gpu import noaux_tc, noaux_tc_redundant
except:
logger.warning("import noaux_tc Failed!")
import numpy as np
def get_moe_method():
"""
return moe method based on device platform
"""
if current_platform.is_cuda() or current_platform.is_iluvatar():
from .fused_moe_cutlass_backend import CutlassMoEMethod
return CutlassMoEMethod(None)
elif current_platform.is_xpu():
from fastdeploy.model_executor.layers.backends import XPUMoEMethod
return XPUMoEMethod(None)
elif current_platform.is_gcu():
from fastdeploy.model_executor.layers.backends import GCUFusedMoeMethod
return GCUFusedMoeMethod(None)
elif current_platform.is_intel_hpu():
from fastdeploy.model_executor.layers.backends import HpuMoEMethod
return HpuMoEMethod(None)
# return HpuTensorWiseFP8MoEMethod(None)
elif current_platform.is_maca():
from fastdeploy.model_executor.layers.backends import (
MetaxCutlassUnquantizedFusedMoEMethod,
)
return MetaxCutlassUnquantizedFusedMoEMethod(None)
return None
def get_moe_scores(
gating_output: paddle.Tensor,
n_group,
topk_group,
top_k,
routed_scaling_factor,
e_score_correction_bias,
renormalize: bool = False,
expert_id_to_ep_rank_array: paddle.Tensor = None,
expert_in_rank_num_list: paddle.Tensor = None,
tokens_per_expert_stats_list: paddle.Tensor = None,
redundant_ep_rank_num_plus_one: int = 1,
) -> paddle.Tensor:
"""
compute moe scores using e_score_correction_bias.
"""
scores = paddle.nn.functional.sigmoid(gating_output)
assert e_score_correction_bias is not None, "e_score_correction_bias is none!"
scores_with_bias = scores + e_score_correction_bias
if expert_id_to_ep_rank_array is None:
scores, topk_values, topk_idx = noaux_tc(
scores,
scores_with_bias,
n_group if n_group > 0 else 1,
topk_group if topk_group > 0 else 1,
top_k,
renormalize,
routed_scaling_factor,
)
else:
scores, topk_values, topk_idx = noaux_tc_redundant(
scores,
scores_with_bias,
expert_id_to_ep_rank_array,
expert_in_rank_num_list,
tokens_per_expert_stats_list,
n_group if n_group > 0 else 1,
topk_group if topk_group > 0 else 1,
top_k,
renormalize,
routed_scaling_factor,
redundant_ep_rank_num_plus_one,
)
return scores, topk_values, topk_idx
class FusedMoE(nn.Layer):
"""
FusedMoE is a layer that performs MoE (Mixture of Experts) computation.
"""
def __init__(
self,
fd_config,
reduce_results: bool = True,
renormalize: bool = False,
moe_intermediate_size: int = -1,
num_experts: int = -1,
expert_id_offset: int = 0,
top_k: int = -1,
topk_method: str = "",
topk_group: int = -1,
n_group: int = -1,
routed_scaling_factor: float = 1.0,
layer_idx: int = -1,
moe_tag: str = "",
gate_correction_bias=None,
redundant_table_manger: RedundantExpertManger = None,
weight_key_map: dict = {},
with_bias: bool = False,
activation="swiglu",
model_format: Optional[str] = None,
):
"""
Initialize the Moe layer with given parameters.
Args:
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
"""
super().__init__()
self.fd_config = fd_config
self.layer_idx = layer_idx
self.reduce_results = reduce_results
self.renormalize = renormalize
self.tp_rank = fd_config.parallel_config.tensor_parallel_rank
self.tp_size = fd_config.parallel_config.tensor_parallel_size
self.ep_size = fd_config.parallel_config.expert_parallel_size
self.ep_rank = fd_config.parallel_config.expert_parallel_rank
self.tp_group = fd_config.parallel_config.tp_group
# NOTE(Zhenyu Li): just supports tp_size = 1 when ep_size > 1 in MOE now.
if self.ep_size > 1:
self.tp_size = 1
self.tp_rank = 0
self.attn_tp_size = fd_config.parallel_config.tensor_parallel_size
self.attn_tp_rank = fd_config.parallel_config.tensor_parallel_rank
assert (self.tp_size >= 1 and self.ep_size == 1) or (
self.tp_size == 1 and self.ep_size > 1
), "MoE only support parallelism on TP or EP dimension."
self.hidden_size = fd_config.model_config.hidden_size
self.num_experts = num_experts
self.num_local_experts = self.num_experts // self.ep_size
self.moe_intermediate_size = moe_intermediate_size // self.tp_size
self.top_k = top_k
self.weight_key_map = weight_key_map
self.use_method = envs.FD_MOE_BACKEND.lower()
self.moe_tag = moe_tag
self.with_bias = with_bias
self.activation = activation
if self.ep_size > 1:
expert_id_offset = expert_id_offset + self.ep_rank * self.num_local_experts
self.expert_id_offset = expert_id_offset
self.gate_correction_bias_key = self.weight_key_map.get("gate_correction_bias_key", None)
if self.gate_correction_bias_key is not None:
self.moe_use_gate_correction_bias = True
else:
self.moe_use_gate_correction_bias = False
# used for deepseek_v3
self.topk_method = topk_method
self.topk_group = topk_group
self.n_group = n_group
self.routed_scaling_factor = routed_scaling_factor
self._dtype = self._helper.get_default_dtype()
self.weight_dtype = self._dtype
self.is_quantized = fd_config.model_config.is_quantized and not (
fd_config.quant_config.name() == "mix_quant" and fd_config.quant_config.moe_quant_type is None
)
moe_quant_config = fd_config.quant_config
self.moe_quant_config = moe_quant_config
self.moe_quant_type = None
if moe_quant_config and moe_quant_config.get_quant_method(self):
self.quant_method = moe_quant_config.get_quant_method(self)
self.moe_quant_type = moe_quant_config.name()
else:
# unquantized quant_method
self.quant_method = get_moe_method()
assert self.quant_method is not None, "self.quant_method should not be None"
self.redundant_table_manger = redundant_table_manger
self.is_rearrange = False
if self.ep_size > 1:
self.quant_method.init_ep(self)
# Merge normal and RL build model
if gate_correction_bias is not None:
self.gate_correction_bias = gate_correction_bias
else:
self.gate_correction_bias = None
self.quant_method.create_weights(
self,
weight_loader=self.weight_loader,
model_format=fd_config.model_config.model_format if model_format is None else model_format,
num_experts=self.num_local_experts if self.ep_size > 1 else self.num_experts,
hidden_size=self.hidden_size,
moe_intermediate_size=self.moe_intermediate_size,
)
logger.info(
f"{moe_tag}MoE config is {num_experts=}[{expert_id_offset}, {expert_id_offset + self.num_local_experts}), \
{top_k=}, hidden_size={self.hidden_size}, {moe_intermediate_size=}, \
, ep_size={self.ep_size}, \
tp_size={self.tp_size}."
)
def weight_loader(
self, param, loaded_weight, expert_id, shard_id: Optional[str] = None, source: Optional[str] = None
):
"""
source:Avoid redundant transpose of fused weights when weight_loader is called iteratively
"""
if expert_id is None and shard_id is None:
# MoE experts has been fused in disk
self._load_fused_experts_weight(param, loaded_weight)
return
if hasattr(param, "SHARD_ID_TO_SHARDED_DIM"):
SHARD_ID_TO_SHARDED_DIM = param.SHARD_ID_TO_SHARDED_DIM
elif current_platform.is_cuda() or current_platform.is_iluvatar() or current_platform.is_maca():
SHARD_ID_TO_SHARDED_DIM = {"gate": 1, "down": 0, "up": 1}
else:
SHARD_ID_TO_SHARDED_DIM = {"gate": 0, "down": 1, "up": 0}
if not (expert_id - self.expert_id_offset >= 0 and expert_id - self.expert_id_offset < self.num_local_experts):
return
if not param._is_initialized():
param.initialize()
weight_need_transpose = getattr(param, "weight_need_transpose", False)
if shard_id is None:
# 1.gate up fused in disk
if weight_need_transpose:
loaded_weight = get_tensor(loaded_weight)
loaded_weight = loaded_weight.transpose([1, 0])
output_size = param[expert_id - self.expert_id_offset].shape[SHARD_ID_TO_SHARDED_DIM["gate"]]
shard_offsets = [
# (shard_id, shard_offset, shard_size)
("gate", 0, output_size // 2 * self.tp_size),
("up", output_size // 2 * self.tp_size, output_size // 2 * self.tp_size),
]
for shard_id, shard_offset, shard_size in shard_offsets:
loaded_weight_shard = slice_fn(
loaded_weight, SHARD_ID_TO_SHARDED_DIM[shard_id], shard_offset, shard_offset + shard_size
)
self.weight_loader(param, loaded_weight_shard, expert_id, shard_id, "fused")
else:
if weight_need_transpose and source != "fused":
loaded_weight = get_tensor(loaded_weight)
loaded_weight = loaded_weight.transpose([1, 0])
# 2.gate up splited in disk
assert shard_id in ["gate", "down", "up"]
self._load_expert_weight(
param=param,
expert_id=expert_id,
loaded_weight=loaded_weight,
shard_id=shard_id,
shard_dim=SHARD_ID_TO_SHARDED_DIM[shard_id],
)
def _load_gate_up_weight(self, param, expert_id, loaded_weight, shard_id, shard_dim=None, is_sharded=False):
if self.tp_size > 1 and not is_sharded:
tp_shard_dim = shard_dim
weight_dim = -1 if tp_shard_dim else 0
size = loaded_weight.shape[weight_dim]
block_size = size // self.tp_size
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, tp_shard_dim, shard_offset, shard_size)
expert_param = param[expert_id - self.expert_id_offset]
dim = -1 if shard_dim else 0
param_shard_size = expert_param.shape[dim] // 2
if shard_id == "gate":
param_shard_offset = 0
else:
# shard_id == "up":
param_shard_offset = param_shard_size
expert_param = slice_fn(
expert_param, shard_dim, start=param_shard_offset, end=param_shard_offset + param_shard_size
)
if hasattr(param, "tensor_track"):
# for dyn quant
param.tensor_track.mark(
start=param_shard_offset,
end=param_shard_offset + param_shard_size,
batch_id=expert_id - self.expert_id_offset,
)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
assert expert_param.shape == loaded_weight.shape, (
f"Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({expert_param.shape})"
)
if expert_param.dtype != loaded_weight.dtype:
if loaded_weight.dtype == paddle.int8 and expert_param.dtype == paddle.float8_e4m3fn:
loaded_weight = loaded_weight.view(expert_param.dtype)
else:
loaded_weight = loaded_weight.cast(expert_param.dtype)
h2d_copy(dst=expert_param, src=loaded_weight)
def _load_down_weight(self, param, expert_id, loaded_weight, shard_id, shard_dim=None):
if self.tp_size > 1 and shard_dim is not None:
tp_shard_dim = shard_dim
dim = -1 if tp_shard_dim else 0
size = loaded_weight.shape[dim]
block_size = size // self.tp_size
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, tp_shard_dim, shard_offset, shard_size)
expert_param = param[expert_id - self.expert_id_offset]
if hasattr(param, "tensor_track"):
# for dyn quant
param.tensor_track.mark(start=0, batch_id=expert_id - self.expert_id_offset)
# To ensure compatibility across backends, apply an extra transpose for GCU and XPU and opensource weight
if expert_param.shape != loaded_weight.shape:
loaded_weight = loaded_weight.transpose([1, 0])
assert expert_param.shape == loaded_weight.shape, (
f"Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({expert_param.shape})"
)
if expert_param.dtype != loaded_weight.dtype:
if loaded_weight.dtype == paddle.int8 and expert_param.dtype == paddle.float8_e4m3fn:
loaded_weight = loaded_weight.view(expert_param.dtype)
else:
loaded_weight = loaded_weight.cast(expert_param.dtype)
h2d_copy(dst=expert_param, src=loaded_weight)
def _load_fused_experts_weight(self, param, loaded_weight):
if self.tp_size > 1:
dim = -1
if isinstance(loaded_weight, (np.ndarray, paddle.Tensor)):
size = loaded_weight.shape[dim]
else:
size = loaded_weight.get_shape()[dim]
block_size = size // self.tp_size
shard_offset = self.tp_rank * block_size
shard_size = (self.tp_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, dim, shard_offset, shard_size)
assert param.shape == loaded_weight.shape, (
f"Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
)
h2d_copy(dst=param, src=loaded_weight)
if hasattr(param, "tensor_track"):
for i in range(self.num_local_experts):
param.tensor_track.mark(start=0, batch_id=i)
def _load_expert_weight(
self,
param,
expert_id,
loaded_weight,
shard_id,
shard_dim=None,
):
if shard_id == "down":
self._load_down_weight(param, expert_id, loaded_weight, shard_id, shard_dim)
elif shard_id in ["gate", "up"]:
self._load_gate_up_weight(param, expert_id, loaded_weight, shard_id, shard_dim)
@classmethod
def make_expert_params_mapping(
cls,
num_experts: int,
ckpt_gate_proj_name: Optional[str] = None,
ckpt_up_proj_name: Optional[str] = None,
ckpt_down_proj_name: Optional[str] = None,
ckpt_gate_up_proj_name: Optional[str] = None,
param_gate_up_proj_name: Optional[str] = None,
param_down_proj_name: Optional[str] = None,
ckpt_expert_key_name: str = "experts",
experts_offset: int = 0,
num_experts_start_offset: int = 0,
) -> list[tuple[str, str, int, str]]:
param_name_maping = []
if ckpt_gate_up_proj_name:
param_name_maping.append((None, ckpt_gate_up_proj_name))
if ckpt_gate_proj_name:
param_name_maping.append(("gate", ckpt_gate_proj_name))
if ckpt_down_proj_name:
param_name_maping.append(("down", ckpt_down_proj_name))
if ckpt_up_proj_name:
param_name_maping.append(("up", ckpt_up_proj_name))
return [
# (param_name, weight_name, expert_id, shard_id)
(
(
param_gate_up_proj_name
if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name, ckpt_gate_up_proj_name]
else param_down_proj_name
),
f"{ckpt_expert_key_name}.{expert_id}.{weight_name}.",
expert_id,
shard_id,
)
for expert_id in range(
experts_offset + num_experts_start_offset, experts_offset + num_experts_start_offset + num_experts
)
for shard_id, weight_name in param_name_maping
]
def load_experts_weight(
self,
state_dict: dict,
up_gate_proj_expert_weight_key: str,
down_proj_expert_weight_key: str,
is_rearrange: bool = False,
):
"""
Load experts weight from state_dict.
Args:
state_dict (dict): The state_dict of model.
up_gate_proj_expert_weight_key (str): The key of up_gate_proj expert weight.
down_proj_expert_weight_key (str): The key of down_proj expert weight.
"""
logical_expert_ids = [
i
for i in range(
self.expert_id_offset,
self.expert_id_offset + self.num_local_experts,
)
]
ep_rank_to_expert_id_list = [i for i in range(self.num_experts)]
if self.redundant_table_manger is not None and is_rearrange is True:
(
ep_rank_to_expert_id_list,
expert_id_to_ep_rank_array,
expert_in_rank_num_list,
tokens_per_expert_stats_list,
) = self.redundant_table_manger.get_ep_rank_to_expert_id_list_by_layer(self.layer_idx)
logical_expert_ids = ep_rank_to_expert_id_list[
self.expert_id_offset : self.expert_id_offset + self.num_local_experts
]
up_gate_proj_weights = []
down_proj_weights = []
if isinstance(state_dict, list):
state_dict = dict(state_dict)
is_ffn_merged = (
up_gate_proj_expert_weight_key.format(logical_expert_ids[0] if is_rearrange else self.expert_id_offset)
in state_dict
)
if is_ffn_merged:
for expert_idx in logical_expert_ids:
down_proj_expert_weight_key_name = down_proj_expert_weight_key.format(expert_idx)
up_gate_proj_expert_weight_key_name = up_gate_proj_expert_weight_key.format(expert_idx)
up_gate_proj_weights.append(
get_tensor(
(
state_dict.pop(up_gate_proj_expert_weight_key_name)
if up_gate_proj_expert_weight_key_name in state_dict
else up_gate_proj_expert_weight_key_name
),
self.fd_config.model_config.model,
)
)
down_proj_weights.append(
get_tensor(
(
state_dict.pop(down_proj_expert_weight_key_name)
if down_proj_expert_weight_key_name in state_dict
else down_proj_expert_weight_key_name
),
self.fd_config.model_config.model,
)
)
else:
gate_expert_weight_key = up_gate_proj_expert_weight_key.replace("up_gate_proj", "gate_proj")
up_expert_weight_key = up_gate_proj_expert_weight_key.replace("up_gate_proj", "up_proj")
for expert_idx in logical_expert_ids:
gate_expert_weight_key_name = gate_expert_weight_key.format(expert_idx)
up_expert_weight_key_name = up_expert_weight_key.format(expert_idx)
down_proj_expert_weight_key_name = down_proj_expert_weight_key.format(expert_idx)
gate = get_tensor(
(
state_dict.pop(gate_expert_weight_key_name)
if gate_expert_weight_key_name in state_dict
else gate_expert_weight_key_name
),
self.fd_config.model_config.model,
)
up = get_tensor(
(
state_dict.pop(up_expert_weight_key_name)
if up_expert_weight_key_name in state_dict
else up_expert_weight_key_name
),
self.fd_config.model_config.model,
)
up_gate_proj_weights.append(paddle.concat([gate, up], axis=-1))
down_proj_weights.append(
get_tensor(
(
state_dict.pop(down_proj_expert_weight_key_name)
if down_proj_expert_weight_key_name in state_dict
else down_proj_expert_weight_key_name
),
self.fd_config.model_config.model,
)
)
return up_gate_proj_weights, down_proj_weights, logical_expert_ids, ep_rank_to_expert_id_list
def extract_moe_ffn_weights(self, state_dict: dict):
"""
Extract MoE FFN weights from state dict based on weight key mapping.
Args:
state_dict (dict): Model state dictionary containing the weights.
Returns:
tuple: A tuple containing two lists:
- up_gate_proj_weights: List of tensors for first FFN layer weights
- down_proj_weights: List of tensors for second FFN layer weights
Raises:
AssertionError: If required weight keys are missing or number of weights
doesn't match number of local experts.
"""
up_gate_proj_expert_weight_key = self.weight_key_map.get("up_gate_proj_expert_weight_key", None)
down_proj_expert_weight_key = self.weight_key_map.get("down_proj_expert_weight_key", None)
assert up_gate_proj_expert_weight_key is not None, "up_gate_proj_expert_weight_key should not be none."
assert down_proj_expert_weight_key is not None, "down_proj_expert_weight_key should not be none."
up_gate_proj_weights, down_proj_weights, logical_expert_ids, ep_rank_to_expert_id_list = (
self.load_experts_weight(
state_dict,
up_gate_proj_expert_weight_key,
down_proj_expert_weight_key,
)
)
assert (
len(up_gate_proj_weights) == self.num_local_experts
), "up_gate_proj_weights length should be equal to num_local_experts."
assert (
len(down_proj_weights) == self.num_local_experts
), "down_proj_weights length should be equal to num_local_experts."
return up_gate_proj_weights, down_proj_weights, logical_expert_ids, ep_rank_to_expert_id_list
def extract_gate_correction_bias(self, gate_correction_bias_key, state_dict):
"""
extract_gate_correction_bias function.
"""
gate_correction_bias_tensor = get_tensor(state_dict.pop(gate_correction_bias_key)).astype("float32")
return gate_correction_bias_tensor
def load_state_dict(self, state_dict, is_rearrange: bool = False):
"""
load_state_dict function.
"""
if self.is_quantized or self.fd_config.model_config.is_moe_quantized:
if getattr(self.fd_config.quant_config, "is_permuted", True):
self.quant_method.process_prequanted_weights(self, state_dict, is_rearrange)
else:
self.quant_method.process_loaded_weights(self, state_dict)
else:
self.quant_method.process_loaded_weights(self, state_dict)
def forward_split_allgather(self, x: paddle.Tensor, gate: nn.Layer):
"""
Forward split allgather function.
"""
token_num = x.shape[0]
token_num_per_rank = (token_num + self.attn_tp_size - 1) // self.attn_tp_size
# AllGather will hang when the data shapes on multi-ranks are different!
part_x = paddle.zeros(shape=[token_num_per_rank, x.shape[1]], dtype=x.dtype)
start_offset = self.attn_tp_rank * token_num_per_rank
end_offset = (self.attn_tp_rank + 1) * token_num_per_rank
if start_offset >= token_num:
start_offset = token_num
if end_offset > token_num:
end_offset = token_num
part_x[: (end_offset - start_offset), :] = x[start_offset:end_offset, :]
out = self.quant_method.apply(self, part_x, gate)
multi_outs = paddle.zeros([token_num_per_rank * self.attn_tp_size, x.shape[1]], dtype=x.dtype)
paddle.distributed.all_gather(multi_outs, out, self.tp_group)
out = multi_outs[:token_num, :]
return out
def forward(self, x: paddle.Tensor, gate: nn.Layer):
"""
Defines the forward computation of the moe layer.
Args:
x (Tensor): Input tensor to the moe layer.
Returns:
Tensor: Output tensor.s
"""
token_num = x.shape[0]
if (
self.ep_size > 1
and self.attn_tp_size > 1
and (not self.fd_config.parallel_config.use_sequence_parallel_moe)
and token_num >= self.attn_tp_size
):
out = self.forward_split_allgather(x, gate)
elif self.fd_config.parallel_config.use_ep and self.fd_config.parallel_config.enable_chunked_moe:
out = self.forward_chunked_moe(x, gate)
else:
out = self.forward_normal(x, gate)
if self.reduce_results and self.tp_size > 1:
out = tensor_model_parallel_all_reduce(out, self.tp_group)
return out
def forward_chunked_moe(self, x: paddle.Tensor, gate: nn.Layer):
"""
Split input to multi chunk to reduce the memory usage of moe.
Args:
x (Tensor): Input tensor to the moe layer.
Returns:
Tensor: Output tensor.s
"""
chunk_size = self.fd_config.parallel_config.chunked_moe_size
token_num = x.shape[0]
fake_x = paddle.empty(
shape=[0, self.fd_config.model_config.hidden_size],
dtype=paddle.get_default_dtype(),
)
# input size that are less than a chunk, less than the max size data or empty input
# need to be repeated until the max chunk data infer MOE finished.
if token_num > chunk_size: # chunked moe
x_split_list = paddle.tensor_split(x, self.fd_config.parallel_config.moe_num_chunk, axis=0)
out_split_list = [None] * self.fd_config.parallel_config.moe_num_chunk
for i in range(self.fd_config.parallel_config.max_moe_num_chunk):
if i < self.fd_config.parallel_config.moe_num_chunk:
out_split_list[i] = self.quant_method.apply(self, x_split_list[i], gate)
else:
# just need to use real data to infer max_moe_num_chunk times.
self.quant_method.apply(self, fake_x, gate)
out = paddle.concat(out_split_list, axis=0)
else:
# when only one chunk, just need to use real data to infer once.
out = self.quant_method.apply(self, x, gate)
for i in range(self.fd_config.parallel_config.max_moe_num_chunk - 1):
self.quant_method.apply(self, fake_x, gate)
return out
def forward_normal(self, x: paddle.Tensor, gate: nn.Layer):
"""
Normal mode of forward.
Args:
x (Tensor): Input tensor to the moe layer.
Returns:
Tensor: Output tensor.s
"""
out = self.quant_method.apply(self, x, gate)
return out