mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* add unnitest for activation, native_paddle_backend, w4a8, w4afp8, platforms/utils * Remove activation function retrieval tests Removed tests for valid and unsupported activation function retrieval. * move w4a8, w4afp8 to quantization * fix code style
32 lines
1.2 KiB
Python
32 lines
1.2 KiB
Python
import unittest
|
|
from unittest.mock import patch
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
|
|
|
|
|
|
class TestConvertToNpuDequantScale(unittest.TestCase):
|
|
|
|
def test_npu_not_available(self):
|
|
with patch("paddle.is_compiled_with_custom_device", return_value=False):
|
|
x = paddle.to_tensor([1.0, 2.0, 3.0], dtype=paddle.float32)
|
|
out = convert_to_npu_dequant_scale(x)
|
|
self.assertTrue((out.numpy() == x.numpy()).all())
|
|
|
|
def test_npu_available(self):
|
|
with patch("paddle.is_compiled_with_custom_device", return_value=True):
|
|
x = paddle.to_tensor([1, 2, 3], dtype=paddle.float32)
|
|
out = convert_to_npu_dequant_scale(x)
|
|
self.assertEqual(out.dtype, paddle.int64)
|
|
# Verify scaled output matches expected NPU dequantization format
|
|
arr = x.numpy()
|
|
new_deq_scale = np.stack([arr.reshape(-1, 1), np.zeros_like(arr).reshape(-1, 1)], axis=-1).reshape(-1)
|
|
expected = np.frombuffer(new_deq_scale.tobytes(), dtype=np.int64)
|
|
self.assertTrue((out.numpy() == expected).all())
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|