Files
FastDeploy/python/fastdeploy/vision/faceid/contrib/insightface_rec.py
2022-09-14 15:44:13 +08:00

100 lines
3.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, Frontend
from .... import c_lib_wrap as C
class InsightFaceRecognitionModel(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=Frontend.ONNX):
# 调用基函数进行backend_option的初始化
# 初始化后的option保存在self._runtime_option
super(InsightFaceRecognitionModel, self).__init__(runtime_option)
self._model = C.vision.faceid.InsightFaceRecognitionModel(
model_file, params_file, self._runtime_option, model_format)
# 通过self.initialized判断整个模型的初始化是否成功
assert self.initialized, "InsightFaceRecognitionModel initialize failed."
def predict(self, input_image):
return self._model.predict(input_image)
# 一些跟InsightFaceRecognitionModel模型有关的属性封装
# 多数是预处理相关可通过修改如model.size = [112, 112]改变预处理时resize的大小前提是模型支持
@property
def size(self):
return self._model.size
@property
def alpha(self):
return self._model.alpha
@property
def beta(self):
return self._model.beta
@property
def swap_rb(self):
return self._model.swap_rb
@property
def l2_normalize(self):
return self._model.l2_normalize
@size.setter
def size(self, wh):
assert isinstance(wh, (list, tuple)),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self._model.size = wh
@alpha.setter
def alpha(self, value):
assert isinstance(value, (list, tuple)),\
"The value to set `alpha` must be type of tuple or list."
assert len(value) == 3,\
"The value to set `alpha` must contatins 3 elements for each channels, but now it contains {} elements.".format(
len(value))
self._model.alpha = value
@beta.setter
def beta(self, value):
assert isinstance(value, (list, tuple)),\
"The value to set `beta` must be type of tuple or list."
assert len(value) == 3,\
"The value to set `beta` must contatins 3 elements for each channels, but now it contains {} elements.".format(
len(value))
self._model.beta = value
@swap_rb.setter
def swap_rb(self, value):
assert isinstance(
value, bool), "The value to set `swap_rb` must be type of bool."
self._model.swap_rb = value
@l2_normalize.setter
def l2_normalize(self, value):
assert isinstance(
value,
bool), "The value to set `l2_normalize` must be type of bool."
self._model.l2_normalize = value