mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
106 lines
3.6 KiB
Python
106 lines
3.6 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from __future__ import absolute_import
|
||
import logging
|
||
from .... import FastDeployModel, Frontend
|
||
from .... import c_lib_wrap as C
|
||
|
||
|
||
class NanoDetPlus(FastDeployModel):
|
||
def __init__(self,
|
||
model_file,
|
||
params_file="",
|
||
runtime_option=None,
|
||
model_format=Frontend.ONNX):
|
||
# 调用基函数进行backend_option的初始化
|
||
# 初始化后的option保存在self._runtime_option
|
||
super(NanoDetPlus, self).__init__(runtime_option)
|
||
|
||
self._model = C.vision.detection.NanoDetPlus(
|
||
model_file, params_file, self._runtime_option, model_format)
|
||
# 通过self.initialized判断整个模型的初始化是否成功
|
||
assert self.initialized, "NanoDetPlus initialize failed."
|
||
|
||
def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5):
|
||
return self._model.predict(input_image, conf_threshold,
|
||
nms_iou_threshold)
|
||
|
||
# 一些跟NanoDetPlus模型有关的属性封装
|
||
# 多数是预处理相关,可通过修改如model.size = [416, 416]改变预处理时resize的大小(前提是模型支持)
|
||
@property
|
||
def size(self):
|
||
return self._model.size
|
||
|
||
@property
|
||
def padding_value(self):
|
||
return self._model.padding_value
|
||
|
||
@property
|
||
def keep_ratio(self):
|
||
return self._model.keep_ratio
|
||
|
||
@property
|
||
def downsample_strides(self):
|
||
return self._model.downsample_strides
|
||
|
||
@property
|
||
def max_wh(self):
|
||
return self._model.max_wh
|
||
|
||
@property
|
||
def reg_max(self):
|
||
return self._model.reg_max
|
||
|
||
@size.setter
|
||
def size(self, wh):
|
||
assert isinstance(wh, (list, tuple)),\
|
||
"The value to set `size` must be type of tuple or list."
|
||
assert len(wh) == 2,\
|
||
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
|
||
len(wh))
|
||
self._model.size = wh
|
||
|
||
@padding_value.setter
|
||
def padding_value(self, value):
|
||
assert isinstance(
|
||
value,
|
||
list), "The value to set `padding_value` must be type of list."
|
||
self._model.padding_value = value
|
||
|
||
@keep_ratio.setter
|
||
def keep_ratio(self, value):
|
||
assert isinstance(
|
||
value, bool), "The value to set `keep_ratio` must be type of bool."
|
||
self._model.keep_ratio = value
|
||
|
||
@downsample_strides.setter
|
||
def downsample_strides(self, value):
|
||
assert isinstance(
|
||
value,
|
||
list), "The value to set `downsample_strides` must be type of list."
|
||
self._model.downsample_strides = value
|
||
|
||
@max_wh.setter
|
||
def max_wh(self, value):
|
||
assert isinstance(
|
||
value, float), "The value to set `max_wh` must be type of float."
|
||
self._model.max_wh = value
|
||
|
||
@reg_max.setter
|
||
def reg_max(self, value):
|
||
assert isinstance(
|
||
value, int), "The value to set `reg_max` must be type of int."
|
||
self._model.reg_max = value
|