Files
FastDeploy/fastdeploy/vision/ocr/ppocr/recognizer.cc
2022-09-14 15:44:13 +08:00

208 lines
6.0 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/recognizer.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
std::vector<std::string> ReadDict(const std::string& path) {
std::ifstream in(path);
std::string line;
std::vector<std::string> m_vec;
if (in) {
while (getline(in, line)) {
m_vec.push_back(line);
}
} else {
std::cout << "no such label file: " << path << ", exit the program..."
<< std::endl;
exit(1);
}
return m_vec;
}
Recognizer::Recognizer() {}
Recognizer::Recognizer(const std::string& model_file,
const std::string& params_file,
const std::string& label_path,
const RuntimeOption& custom_option,
const Frontend& model_format) {
if (model_format == Frontend::ONNX) {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO}; // 指定可用的CPU后端
valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端
} else {
// NOTE:此模型暂不支持paddle-inference-Gpu推理
valid_cpu_backends = {Backend::ORT, Backend::PDINFER, Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
// Recognizer在使用CPU推理并把PaddleInference作为推理后端时,需要删除以下2个pass//
runtime_option.DeletePaddleBackendPass("matmul_transpose_reshape_fuse_pass");
runtime_option.DeletePaddleBackendPass(
"matmul_transpose_reshape_mkldnn_fuse_pass");
initialized = Initialize();
// init label_lsit
label_list = ReadDict(label_path);
label_list.insert(label_list.begin(), "#"); // blank char for ctc
label_list.push_back(" ");
}
// Init
bool Recognizer::Initialize() {
// pre&post process parameters
rec_batch_num = 1;
rec_img_h = 48;
rec_img_w = 320;
rec_image_shape = {3, rec_img_h, rec_img_w};
mean = {0.5f, 0.5f, 0.5f};
scale = {0.5f, 0.5f, 0.5f};
is_scale = true;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
void OcrRecognizerResizeImage(Mat* mat, const float& wh_ratio,
const std::vector<int>& rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_shape[1];
imgW = rec_image_shape[2];
imgW = int(imgH * wh_ratio);
float ratio = float(mat->Width()) / float(mat->Height());
int resize_w;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
Resize::Run(mat, resize_w, imgH);
std::vector<float> value = {127, 127, 127};
Pad::Run(mat, 0, 0, 0, int(imgW - mat->Width()), value);
}
//预处理
bool Recognizer::Preprocess(Mat* mat, FDTensor* output,
const std::vector<int>& rec_image_shape) {
int imgH = rec_image_shape[1];
int imgW = rec_image_shape[2];
float wh_ratio = imgW * 1.0 / imgH;
float ori_wh_ratio = mat->Width() * 1.0 / mat->Height();
wh_ratio = std::max(wh_ratio, ori_wh_ratio);
OcrRecognizerResizeImage(mat, wh_ratio, rec_image_shape);
Normalize::Run(mat, mean, scale, true);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1);
return true;
}
//后处理
bool Recognizer::Postprocess(FDTensor& infer_result,
std::tuple<std::string, float>* rec_result) {
std::vector<int64_t> output_shape = infer_result.shape;
FDASSERT(output_shape[0] == 1, "Only support batch =1 now.");
float* out_data = static_cast<float*>(infer_result.Data());
std::string str_res;
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < output_shape[1]; n++) {
argmax_idx = int(
std::distance(&out_data[n * output_shape[2]],
std::max_element(&out_data[n * output_shape[2]],
&out_data[(n + 1) * output_shape[2]])));
max_value = float(*std::max_element(&out_data[n * output_shape[2]],
&out_data[(n + 1) * output_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
str_res += label_list[argmax_idx];
}
last_index = argmax_idx;
}
score /= count;
std::get<0>(*rec_result) = str_res;
std::get<1>(*rec_result) = score;
return true;
}
//预测
bool Recognizer::Predict(cv::Mat* img,
std::tuple<std::string, float>* rec_result) {
Mat mat(*img);
std::vector<FDTensor> input_tensors(1);
if (!Preprocess(&mat, &input_tensors[0], rec_image_shape)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors[0], rec_result)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namesapce ocr
} // namespace vision
} // namespace fastdeploy