Files
FastDeploy/fastdeploy/backends/openvino/ov_backend.cc
2022-09-14 15:44:13 +08:00

254 lines
9.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/backends/openvino/ov_backend.h"
#ifdef ENABLE_PADDLE_FRONTEND
#include "paddle2onnx/converter.h"
#endif
namespace fastdeploy {
std::vector<int64_t> PartialShapeToVec(const ov::PartialShape& shape) {
std::vector<int64_t> res;
for (int i = 0; i < shape.size(); ++i) {
auto dim = shape[i];
if (dim.is_dynamic()) {
res.push_back(-1);
} else {
res.push_back(dim.get_length());
}
}
return res;
}
FDDataType OpenVINODataTypeToFD(const ov::element::Type& type) {
if (type == ov::element::f32) {
return FDDataType::FP32;
} else if (type == ov::element::f64) {
return FDDataType::FP64;
} else if (type == ov::element::i8) {
return FDDataType::INT8;
} else if (type == ov::element::i32) {
return FDDataType::INT32;
} else if (type == ov::element::i64) {
return FDDataType::INT64;
} else {
FDASSERT(false, "Only support float/double/int8/int32/int64 now.");
}
return FDDataType::FP32;
}
ov::element::Type FDDataTypeToOV(const FDDataType& type) {
if (type == FDDataType::FP32) {
return ov::element::f32;
} else if (type == FDDataType::FP64) {
return ov::element::f64;
} else if (type == FDDataType::INT8) {
return ov::element::i8;
} else if (type == FDDataType::INT32) {
return ov::element::i32;
} else if (type == FDDataType::INT64) {
return ov::element::i64;
}
FDASSERT(false, "Only support float/double/int8/int32/int64 now.");
return ov::element::f32;
}
void OpenVINOBackend::InitTensorInfo(
const std::vector<ov::Output<ov::Node>>& ov_outputs,
std::map<std::string, TensorInfo>* tensor_infos) {
for (size_t i = 0; i < ov_outputs.size(); ++i) {
TensorInfo info;
auto partial_shape = PartialShapeToVec(ov_outputs[i].get_partial_shape());
info.shape.assign(partial_shape.begin(), partial_shape.end());
info.name = ov_outputs[i].get_any_name();
info.dtype = OpenVINODataTypeToFD(ov_outputs[i].get_element_type());
tensor_infos->insert(std::make_pair(info.name, info));
}
}
bool OpenVINOBackend::InitFromPaddle(const std::string& model_file,
const std::string& params_file,
const OpenVINOBackendOption& option) {
if (initialized_) {
FDERROR << "OpenVINOBackend is already initlized, cannot initialize again."
<< std::endl;
return false;
}
option_ = option;
ov::AnyMap properties;
if (option_.cpu_thread_num > 0) {
properties["INFERENCE_NUM_THREADS"] = option_.cpu_thread_num;
}
std::shared_ptr<ov::Model> model = core_.read_model(model_file, params_file);
// Get inputs/outputs information from loaded model
const std::vector<ov::Output<ov::Node>> inputs = model->inputs();
std::map<std::string, TensorInfo> input_infos;
InitTensorInfo(inputs, &input_infos);
const std::vector<ov::Output<ov::Node>> outputs = model->outputs();
std::map<std::string, TensorInfo> output_infos;
InitTensorInfo(outputs, &output_infos);
// OpenVINO model may not keep the same order with original model
// So here will reorder it's inputs and outputs
std::string model_content;
ReadBinaryFromFile(model_file, &model_content);
auto reader = paddle2onnx::PaddleReader(model_content.c_str(), model_content.size());
if (reader.num_inputs != input_infos.size()) {
FDERROR << "The number of inputs from PaddleReader:" << reader.num_inputs << " not equal to the number of inputs from OpenVINO:" << input_infos.size() << "." << std::endl;
return false;
}
if (reader.num_outputs != output_infos.size()) {
FDERROR << "The number of outputs from PaddleReader:" << reader.num_outputs << " not equal to the number of outputs from OpenVINO:" << output_infos.size() << "." << std::endl;
return false;
}
for (int i = 0; i < reader.num_inputs; ++i) {
auto iter = input_infos.find(std::string(reader.inputs[i].name));
if (iter == input_infos.end()) {
FDERROR << "Cannot find input name:" << reader.inputs[i].name << " from OpenVINO model." << std::endl;
return false;
}
input_infos_.push_back(iter->second);
}
for (int i = 0; i < reader.num_outputs; ++i) {
auto iter = output_infos.find(std::string(reader.outputs[i].name));
if (iter == output_infos.end()) {
FDERROR << "Cannot find output name:" << reader.outputs[i].name << " from OpenVINO model." << std::endl;
return false;
}
output_infos_.push_back(iter->second);
}
compiled_model_ = core_.compile_model(model, "CPU", properties);
request_ = compiled_model_.create_infer_request();
initialized_ = true;
return true;
}
TensorInfo OpenVINOBackend::GetInputInfo(int index) {
FDASSERT(index < NumInputs(),
"The index: %d should less than the number of outputs: %d.", index,
NumOutputs());
return input_infos_[index];
}
TensorInfo OpenVINOBackend::GetOutputInfo(int index) {
FDASSERT(index < NumOutputs(),
"The index: %d should less than the number of outputs: %d.", index,
NumOutputs());
return output_infos_[index];
}
bool OpenVINOBackend::InitFromOnnx(const std::string& model_file,
const OpenVINOBackendOption& option) {
if (initialized_) {
FDERROR << "OpenVINOBackend is already initlized, cannot initialize again."
<< std::endl;
return false;
}
option_ = option;
ov::AnyMap properties;
if (option_.cpu_thread_num > 0) {
properties["INFERENCE_NUM_THREADS"] = option_.cpu_thread_num;
}
std::shared_ptr<ov::Model> model = core_.read_model(model_file);
// Get inputs/outputs information from loaded model
const std::vector<ov::Output<ov::Node>> inputs = model->inputs();
std::map<std::string, TensorInfo> input_infos;
InitTensorInfo(inputs, &input_infos);
const std::vector<ov::Output<ov::Node>> outputs = model->outputs();
std::map<std::string, TensorInfo> output_infos;
InitTensorInfo(outputs, &output_infos);
// OpenVINO model may not keep the same order with original model
// So here will reorder it's inputs and outputs
std::string model_content;
ReadBinaryFromFile(model_file, &model_content);
auto reader = paddle2onnx::OnnxReader(model_content.c_str(), model_content.size());
if (reader.num_inputs != input_infos.size()) {
FDERROR << "The number of inputs from OnnxReader:" << reader.num_inputs << " not equal to the number of inputs from OpenVINO:" << input_infos.size() << "." << std::endl;
return false;
}
if (reader.num_outputs != output_infos.size()) {
FDERROR << "The number of outputs from OnnxReader:" << reader.num_outputs << " not equal to the number of outputs from OpenVINO:" << output_infos.size() << "." << std::endl;
return false;
}
for (int i = 0; i < reader.num_inputs; ++i) {
auto iter = input_infos.find(std::string(reader.inputs[i].name));
if (iter == input_infos.end()) {
FDERROR << "Cannot find input name:" << reader.inputs[i].name << " from OpenVINO model." << std::endl;
return false;
}
input_infos_.push_back(iter->second);
}
for (int i = 0; i < reader.num_outputs; ++i) {
auto iter = output_infos.find(std::string(reader.outputs[i].name));
if (iter == output_infos.end()) {
FDERROR << "Cannot find output name:" << reader.outputs[i].name << " from OpenVINO model." << std::endl;
return false;
}
output_infos_.push_back(iter->second);
}
compiled_model_ = core_.compile_model(model, "CPU", properties);
request_ = compiled_model_.create_infer_request();
initialized_ = true;
return true;
}
int OpenVINOBackend::NumInputs() const { return input_infos_.size(); }
int OpenVINOBackend::NumOutputs() const { return output_infos_.size(); }
bool OpenVINOBackend::Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs) {
if (inputs.size() != input_infos_.size()) {
FDERROR << "[OpenVINOBackend] Size of the inputs(" << inputs.size()
<< ") should keep same with the inputs of this model("
<< input_infos_.size() << ")." << std::endl;
return false;
}
for (size_t i = 0; i < inputs.size(); ++i) {
ov::Shape shape(inputs[i].shape.begin(), inputs[i].shape.end());
ov::Tensor ov_tensor(FDDataTypeToOV(inputs[i].dtype), shape,
inputs[i].Data());
request_.set_tensor(inputs[i].name, ov_tensor);
}
request_.infer();
outputs->resize(output_infos_.size());
for (size_t i = 0; i < output_infos_.size(); ++i) {
auto out_tensor = request_.get_output_tensor(i);
auto out_tensor_shape = out_tensor.get_shape();
std::vector<int64_t> shape(out_tensor_shape.begin(),
out_tensor_shape.end());
(*outputs)[i].Allocate(shape,
OpenVINODataTypeToFD(out_tensor.get_element_type()),
output_infos_[i].name);
memcpy((*outputs)[i].MutableData(), out_tensor.data(),
(*outputs)[i].Nbytes());
}
return true;
}
} // namespace fastdeploy