mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
60 lines
2.0 KiB
Python
60 lines
2.0 KiB
Python
"""
|
|
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import paddle
|
|
import paddle.distributed as dist
|
|
from glob import glob
|
|
import os
|
|
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_dir", type=str, required=True)
|
|
args = parser.parse_args()
|
|
|
|
rank = dist.get_rank()
|
|
ep_num = dist.get_world_size()
|
|
print("rank: ", rank)
|
|
# merge tpn -> tp1
|
|
model_dir = args.model_dir
|
|
save_merged_pp_dir = os.path.join(model_dir, "merged_tp1_state_split")
|
|
os.makedirs(save_merged_pp_dir, exist_ok=True)
|
|
|
|
model_path_pp = glob(os.path.join(model_dir, "shangxianv1_ep_hadamard_quantmodel_to_eval_pp*"))
|
|
for p in model_path_pp:
|
|
model_path_ep = os.path.join(p, f"model_state.ep0{rank}.pdparams")
|
|
print(p, model_path_ep)
|
|
|
|
state_dicts = paddle.load(model_path_ep, return_numpy=True)
|
|
|
|
print("merge ep")
|
|
print("p: ", p)
|
|
for k, v in state_dicts.items():
|
|
v = paddle.to_tensor(v)
|
|
if "mlp.experts" in k:
|
|
k_list = k.split(".")
|
|
export_id = rank * ep_num + int(k_list[5])
|
|
k_list[5] = str(export_id)
|
|
k = ".".join(k_list)
|
|
print(f"key: {k}")
|
|
save_split_path = os.path.join(save_merged_pp_dir, k)
|
|
paddle.save(v, save_split_path)
|
|
elif rank == 0:
|
|
save_split_path = os.path.join(save_merged_pp_dir, k)
|
|
paddle.save(paddle.to_tensor(v), save_split_path)
|
|
print(f"merge {p} end")
|
|
print("merge end")
|