Files
FastDeploy/fastdeploy/model_executor/models/utils.py
2025-06-09 19:20:15 +08:00

1352 lines
48 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
import collections
import hashlib
import json
import multiprocessing as mp
import os
import random
import re
import struct
from functools import partial
from typing import Callable, Optional
import numpy as np
from paddlenlp.transformers import PretrainedTokenizer
from paddlenlp.transformers.model_utils import _add_variant
from paddlenlp.transformers.utils import paddlenlp_load
from paddlenlp.transformers.model_utils import load_tp_checkpoint
from safetensors import safe_open
from paddlenlp.utils.env import (
PADDLE_WEIGHTS_INDEX_NAME,
SAFE_MASTER_WEIGHTS_INDEX_NAME,
SAFE_PEFT_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_INDEX_NAME,
)
from paddlenlp.utils.log import logger
from tqdm import tqdm
import paddle
import paddle.distributed as dist
from paddle.common_ops_import import convert_dtype
from paddle.distributed import fleet
from paddlenlp.transformers import PretrainedTokenizer
from paddlenlp.transformers.model_utils import _add_variant, load_tp_checkpoint
from paddlenlp.transformers.utils import paddlenlp_load
from paddlenlp.utils.env import (PADDLE_WEIGHTS_INDEX_NAME,
SAFE_MASTER_WEIGHTS_INDEX_NAME,
SAFE_PEFT_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_INDEX_NAME)
from paddlenlp.utils.log import logger
from safetensors import safe_open
from tqdm import tqdm
from fastdeploy.platforms import current_platform
from .tokenizer import ErnieBotTokenizer
import glob
MODEL_LIB_NAMES = [
"ernie_bot.modeling",
"ernie_bot.modeling_pp",
"ernie_bot.modeling_moe",
"ernie_bot.modeling_rm",
"ernie_bot.proxy_distill",
]
MAX_BSZ = 512
MAX_DRAFT_TOKENS = 6
class UniqueIDGenerator:
"""
The generator for the export model id
"""
def __init__(self):
pass
def generate_unique_id(self, state_dict):
"""
Generate the model id from the timestamp
"""
keys = state_dict.keys()
sorted_keys = sorted(keys)
first_key = sorted_keys[0]
first_parameter = state_dict[first_key].cast("float32")
# 假设模型参数是唯一的通过第一个key来获取md5sum
model_md5 = hashlib.md5(str(
first_parameter.sum()).encode("utf-8")).hexdigest()
unique_id = f"{model_md5}-{random.randint(10000, 99999)}"
return unique_id
def load_sharded_checkpoint(folder, variant=None, return_numpy=False):
"""
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
loaded in the model.
Args:
folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
variant (`str`): The model variant.
"""
# Load the index
pdparams_file = os.path.join(folder,
_add_variant("model_state.pdparams", variant))
lora_pdparams_file = os.path.join(
folder, _add_variant("lora_model_state.pdparams", variant))
safetensors_file = os.path.join(folder,
_add_variant("model.safetensors", variant))
if os.path.isfile(pdparams_file):
return paddle.load(pdparams_file, return_numpy=return_numpy)
if os.path.isfile(lora_pdparams_file):
return paddle.load(lora_pdparams_file, return_numpy=return_numpy)
if os.path.isfile(safetensors_file):
try:
from paddlenlp.utils.safetensors import \
fast_load_file as safe_load_file
except ImportError:
from safetensors.numpy import load_file as safe_load_file
state_dict = safe_load_file(safetensors_file)
if not return_numpy:
for key in list(state_dict.keys()):
if isinstance(state_dict[key], np.ndarray):
state_dict[key] = paddle.Tensor(state_dict.pop(key),
zero_copy=True)
return state_dict
index_file = os.path.join(folder,
_add_variant(PADDLE_WEIGHTS_INDEX_NAME, variant))
safe_index_file = os.path.join(
folder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant))
safe_master_file = os.path.join(
folder, _add_variant(SAFE_MASTER_WEIGHTS_INDEX_NAME, variant))
safe_peft_file = os.path.join(
folder, _add_variant(SAFE_PEFT_WEIGHTS_INDEX_NAME, variant))
index_present = os.path.isfile(index_file)
safe_index_present = os.path.isfile(safe_index_file)
safe_master_present = os.path.isfile(safe_master_file)
safe_peft_present = os.path.isfile(safe_peft_file)
load_safe = False
load_index = None
if safe_index_present:
load_safe = True # load safe due to preference
load_index = safe_index_file
elif safe_master_present:
load_safe = True
load_index = safe_master_file
elif index_present:
load_index = index_file
elif safe_peft_present:
load_safe = True
load_index = safe_peft_file
else:
raise ValueError(
f"Could not find {index_file} or {safe_index_file} or {safe_peft_file}"
)
if load_safe:
try:
from paddlenlp.utils.safetensors import \
fast_load_file as safe_load_file
except ImportError:
from safetensors.numpy import load_file as safe_load_file
with open(load_index, "r", encoding="utf-8") as f:
index = json.load(f)
shard_files = list(set(index["weight_map"].values()))
loader = (safe_load_file if load_safe else partial(
paddlenlp_load, map_location="np" if return_numpy else "cpu"))
ret = {}
for shard_file in tqdm(shard_files):
state_dict = loader(os.path.join(folder, shard_file))
ret.update(state_dict)
if not return_numpy:
for key in list(ret.keys()):
if isinstance(ret[key], np.ndarray):
ret[key] = paddle.Tensor(ret.pop(key), zero_copy=True)
return ret
def convert_ndarray_dtype(np_array: np.ndarray,
target_dtype: str) -> np.ndarray:
"""convert ndarray
Args:
np_array (np.ndarray): numpy ndarray instance
target_dtype (str): the target dtype
Returns:
np.ndarray: converted numpy ndarray instance
"""
source_dtype = convert_dtype(np_array.dtype)
if source_dtype == "uint16" or target_dtype == "bfloat16":
if paddle.is_compiled_with_xpu():
# xpu not support bf16.
tensor = paddle.to_tensor(np_array, place=paddle.CPUPlace())
else:
tensor = paddle.to_tensor(np_array)
tensor = paddle.cast(tensor, target_dtype)
return tensor.numpy()
# TODO(wj-Mcat): device_guard will slow the converting
# with device_guard("cpu"):
# tensor = paddle.to_tensor(np_array)
# tensor = paddle.cast(tensor, target_dtype)
# return tensor.numpy()
if target_dtype == "bfloat16":
target_dtype = "uint16"
return np_array.astype(target_dtype)
def ernie_bot_postprocess_past_key_value(past_key_values):
"""
ernie_bot_postprocess_past_key_values
"""
Cache = collections.namedtuple("Cache", ["k", "v"])
# (layer_num, bs, prefixlen, head_num/tensor_parallel_degree, head_dim)*2
keys, values = paddle.transpose(past_key_values, perm=[2, 0, 1, 3,
4]).split(2)
past_key_values = []
for k, v in zip(keys, values):
past_key_values.append(Cache(k, v))
return past_key_values
def ernie_bot_pad_attention_mask(input_ids_shape, num_prefix_tokens,
attention_mask):
"""
ernie_bot_pad_attention_mask
"""
if attention_mask.dim() == 2:
attention_mask = attention_mask[:, None, None, :]
prefix_attention_mask = paddle.ones(
[input_ids_shape[0], 1, 1, num_prefix_tokens],
dtype=attention_mask.dtype,
)
else:
prefix_attention_mask = paddle.ones(
[input_ids_shape[0], 1, input_ids_shape[-1], num_prefix_tokens],
dtype=attention_mask.dtype,
)
return paddle.concat((prefix_attention_mask, attention_mask), axis=3)
def set_seed(seed: int):
"""
set random seed for all random modules
"""
paddle.seed(seed)
random.seed(seed)
np.random.seed(seed)
def get_infer_model_path(input_dir, model_prefix, is_export: bool = False):
"""when n_ranks = 1, infer_model_path is: `{input_dir}/{model_prefix}.pdiparams`
when n_ranks > 1, infer_model_path is: `{input_dir}/rank_{idx}/{model_prefix}.pdiparams`
Args:
input_dir (str): the base input_dir
model_prefix (str): the prefix name of model
Returns:
str: the path of infer model path
"""
n_ranks = dist.get_world_size()
try:
local_rank = dist.ParallelEnv().dev_id
except Exception:
logger.info(
"`dist.ParallelEnv().dev_id` is not supported on CPU devices,so set local_rank = 0."
)
local_rank = 0
if n_ranks > 1:
return os.path.join(input_dir, f"rank_{local_rank}", model_prefix)
# if n_ranks director exist, return N-rank directory
sub_rank_dir = os.path.join(input_dir, f"rank_{local_rank}")
if is_export:
return os.path.join(sub_rank_dir, model_prefix)
else:
# when inference, return sub_rank_dir when exists
if os.path.exists(sub_rank_dir):
return os.path.join(sub_rank_dir, model_prefix)
else:
return os.path.join(input_dir, model_prefix)
def pad_batch_data(insts, pad_id=0, return_seq_len=False, pad_style="right"):
"""Pad the instances to the max sequence length in batch."""
# pad to max input len i bsz
max_len = max(map(len, insts))
# pad to max input len
# max_len = args.max_len
if pad_style == "left":
inst_data = np.array([[pad_id] * (max_len - len(inst)) + list(inst)
for inst in insts])
else:
inst_data = np.array(
[list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts])
if return_seq_len:
seq_len = np.array([len(inst) for inst in insts])
return inst_data.astype("int64").reshape([-1, max_len]), seq_len
else:
return inst_data.astype("int64").reshape([-1, max_len])
def load_prefix_weights(
prefix_path: str,
inference: bool = False,
batch_size: int = 1,
dtype: str = "bfloat16",
) -> np.ndarray | list[paddle.Tensor]:
"""load prefix weight by path
Args:
prefix_path (str): the path of prefix weight
"""
past_key_values = paddle.to_tensor(
np.load(f"{prefix_path}/pre_caches.npy")).unsqueeze(2)
if batch_size > 1:
past_key_values = paddle.concat([past_key_values] * batch_size, axis=2)
# .chatglm static model require one tensor, otherwise list of tensor
past_key_values = past_key_values.astype(dtype)
if inference:
return past_key_values.numpy()
return past_key_values
def build_for_generation(model, tokenizer: PretrainedTokenizer,
generation_kwargs: dict):
"""build `ErnieBotForGenerationFuse` to generate tokens
Args:
model (_type_): ErnieBotModel or ErnieBotFusedModel
tokenizer (PretrainedTokenizer): pretrained tokenizer
generation_kwargs (dict): generation_kwargs for model
Returns:
PretrainedModel: ErnieBotForGenerationFuse
"""
from ernie_bot.single_model_fused import ErnieBotForGenerationFuse
configs = {
"bos_token_id": tokenizer.bos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.pad_token_id,
"initializer_range": 0.02,
"fused_linear": False,
"min_dec_len": 1,
"max_dec_len": 1024,
"top_k": 0,
"top_p": 0.7,
"temperature": 0.95,
"use_topp_sampling": True,
"inference": True,
}
configs.update(generation_kwargs)
model = ErnieBotForGenerationFuse(model, configs=configs)
model.eval()
return model
def init_distributed_env() -> tuple[int, int]:
"""init distributed envs, and only support mp in ErnieBotModel
Returns:
tuple[int, int]: tensor_parallel_degree, tensor_parallel_rank
"""
tensor_parallel_degree = dist.get_world_size()
tensor_parallel_rank = 0
if tensor_parallel_degree > 1:
strategy = fleet.DistributedStrategy()
strategy.hybrid_configs = {
"dp_degree": 1,
"mp_degree": tensor_parallel_degree,
"pp_degree": 1,
"sharding_degree": 1,
}
fleet.init(is_collective=True, strategy=strategy)
hcg = fleet.get_hybrid_communicate_group()
tensor_parallel_rank = hcg.get_model_parallel_rank()
return tensor_parallel_degree, tensor_parallel_rank
def generate_rank_mapping(output_dir: str):
"""generate current distributed rank mapping file
Args:
output_dir (str): the directory of rank_mapping file
"""
os.makedirs(output_dir, exist_ok=True)
# must in distributed env
hcg = fleet.get_hybrid_communicate_group()
model_parallel_group = hcg.get_model_parallel_group()
ring_id = model_parallel_group.id
world_size = dist.get_world_size()
with open(os.path.join(output_dir, "rank_mapping.csv"), "w") as f:
f.write("[ring_id -> ranks]\n")
f.write(",".join(map(str, [0] + list(range(world_size)))) + "\n")
f.write(",".join(map(str, [ring_id] + list(range(world_size)))) + "\n")
f.write("[rank -> ring_ids]\n")
for i in range(world_size):
f.write(f"{i},0,{ring_id}\n")
def save_infer_result(trainer, dev_ds, k=100, src_length=256, tgt_length=512):
"""
save infer result into jsonl format
"""
from predict_generation import Predictor, batchfy_text
all_instructions = []
all_answers = []
all_output = []
# top k instruction from dev_ds
for i, ds in enumerate(dev_ds.data):
if i == k:
break
if "instruction" in ds:
all_instructions.append(ds["instruction"])
all_answers.append(ds["output"])
elif "src" in ds:
if isinstance(ds["src"], list):
all_instructions.append(ds["src"][0])
all_answers.append(ds["tgt"][0])
else:
all_instructions.append(ds["src"])
all_answers.append(ds["tgt"])
batch_texts = batchfy_text(all_instructions,
trainer.args.per_device_eval_batch_size)
predictor = Predictor(
tokenizer=trainer.tokenizer,
model=trainer.model,
src_length=src_length,
tgt_length=tgt_length,
)
# infer results
for bs, texts in enumerate(batch_texts):
outputs = predictor.predict(texts)
for i, (text, result) in enumerate(zip(texts, outputs["result"])):
out = {
"instruction":
text,
"answer":
all_answers[bs * trainer.args.per_device_eval_batch_size + i],
"output":
result,
}
all_output.append(out)
# save results
if trainer.args.tensor_parallel_rank == 0:
with open(os.path.join(trainer.args.output_dir, "infer_result.json"),
"w") as f:
for out in all_output:
f.write(json.dumps(out, ensure_ascii=False) + "\n")
def w4a8_weight_convert(state_dict):
"""W4A8 权重转换函数
Args:
state_dict (dict): state_dict of model
"""
def w4_weight_squash(value, name, w4a8_weight_bites_name_map):
weight_dq = value
# W8表象下的W4权重的absmax值为112使用正负112进行权重类型判断
if weight_dq.max() == 112 or weight_dq.min() == -112:
weight_dq = weight_dq.cast("int8")
np_weight_dq = np.array(weight_dq, dtype="int8").view("uint8")
np_weight_dq_left_div_16 = (np_weight_dq / 16).astype("int8")
# weight_q = (weight_dq/16).cast('int8')
weight_q = paddle.to_tensor(np_weight_dq_left_div_16, dtype="int8")
logger.debug(f"int4 weight:{name}")
w4a8_weight_bites_name_map[name] = 4
return weight_q.cast("int8")
elif weight_dq.max() == 127 or weight_dq.min() == -128:
logger.debug(f"int8 weight:{name}")
w4a8_weight_bites_name_map[name] = 8
return weight_dq.cast("int8")
else:
logger.debug(f"fp16/bf16/float weight:{name}")
return weight_dq
w4a8_weight_bites_name_map = {}
for name, value in state_dict.items():
if value.dtype == "uint16":
weight_q = w4_weight_squash(
paddle.to_tensor(value).cast("float32"),
name,
w4a8_weight_bites_name_map,
)
state_dict[name] = weight_q.numpy(
) if weight_q is not None else value
del weight_q
w4a8_weight_bites_layers_map = {}
w4a8_weight_bites_layers_map["qkv_gemm_bits_map"] = []
w4a8_weight_bites_layers_map["out_gemm_bits_map"] = []
w4a8_weight_bites_layers_map["ffn1_gemm_bits_map"] = []
w4a8_weight_bites_layers_map["ffn2_gemm_bits_map"] = []
for name_keys, gemm_bits in w4a8_weight_bites_name_map.items():
if "qkv_proj" in name_keys:
w4a8_weight_bites_layers_map["qkv_gemm_bits_map"].append(gemm_bits)
elif "out_proj" in name_keys:
w4a8_weight_bites_layers_map["out_gemm_bits_map"].append(gemm_bits)
elif "linear1" in name_keys:
w4a8_weight_bites_layers_map["ffn1_gemm_bits_map"].append(
gemm_bits)
elif "linear2" in name_keys:
w4a8_weight_bites_layers_map["ffn2_gemm_bits_map"].append(
gemm_bits)
logger.debug(
f"w4a8_weight_bites_layers_map:{w4a8_weight_bites_layers_map}")
return state_dict, w4a8_weight_bites_layers_map
def _vocab_size_with_padding(vocab_size, div_unit, mp_degree):
padded_size = vocab_size
multiple = div_unit * mp_degree
while (padded_size % multiple) != 0:
padded_size += 1
# logger.warning(
# " > padded vocab (size: {}) with {} dummy tokens "
# "(new size: {})".format(vocab_size, padded_size - vocab_size, padded_size)
# )
return padded_size
def save_test_case(cases: list[list[dict]], file: str):
"""save test to result file
Args:
cases (list[list[dict]]): the content of case
file (str): the path of saved file
"""
with open(file, "w+", encoding="utf-8") as f:
for case in cases:
raw = json.dumps(case, ensure_ascii=False)
f.write(raw + "\n")
def infer_save_test_case(cases: list[list[dict]], file: str):
"""save test to result file
Args:
cases (list[list[dict]]): the content of case
file (str): the path of saved file
"""
with open(file, "a+", encoding="utf-8") as f:
for case in cases:
raw = json.dumps(case, ensure_ascii=False)
f.write(raw + "\n")
def deserialize_from_file(fp):
"""
deserialize a binary file into an array
"""
x_type = fp.read(1)
x_type_out = struct.unpack("c", x_type)[0]
# data
data_list = []
if x_type_out == b"0":
data = fp.read(4)
data_out = struct.unpack("f", data)[0]
while data:
data_out = struct.unpack("f", data)[0]
data_list.append(data_out)
data = fp.read(4)
elif x_type_out == b"1":
data = fp.read(8)
while data:
data_out = struct.unpack("l", data)[0]
data_list.append(data_out)
data = fp.read(8)
elif x_type_out == b"2":
data = fp.read(4)
while data:
data_out = struct.unpack("i", data)[0]
data_list.append(data_out)
data = fp.read(4)
else:
print("type error")
data_arr = np.array(data_list)
return data_arr
def read_res(
model_name_or_path,
output_tensor_max_shape,
result_queue: mp.Queue,
msg_queue_id=None,
use_ep=False,
ep_just_for_test=False,
tokenizer=None,
):
"""Read result from queue."""
if msg_queue_id is None:
if (current_platform.is_cuda() and
current_platform.available()) or paddle.is_compiled_with_xpu():
from fastdeploy.model_executor.ops.gpu import get_output
elif paddle.is_compiled_with_custom_device("npu"):
from paddle_custom_device.npu import get_output
else: # CPU
from fastdeploy.model_executor.ops.cpu import get_output
else:
if (current_platform.is_cuda() and
current_platform.available()) or paddle.is_compiled_with_xpu():
from fastdeploy.model_executor.ops.gpu import get_output_dynamic
elif paddle.is_compiled_with_custom_device("npu"):
from paddle_custom_device.npu import get_output_dynamic
else: # CPU
from fastdeploy.model_executor.ops.cpu import get_output_dynamic
if tokenizer is None:
tokenizer = ErnieBotTokenizer.from_pretrained(model_name_or_path)
paddle.device.set_device("cpu")
paddle.disable_static()
output_tensor = paddle.full(output_tensor_max_shape,
fill_value=2,
dtype="int64")
while True:
outputs = []
while True:
if msg_queue_id is None:
get_output(output_tensor, 0, True)
else:
get_output_dynamic(output_tensor, 0, True, msg_queue_id)
if int(output_tensor[0, 0]) == -2: # read none
continue
bsz = int(output_tensor[1, 0])
output_numpy = output_tensor[2:bsz + 2].numpy()
output_numpy[output_numpy == -1] = 2
outputs.append(output_numpy)
if int(output_tensor[0, 0]) < 0:
break
output = np.concatenate(outputs, axis=1)
seqs = tokenizer.batch_decode(
output.tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
if use_ep and (not ep_just_for_test):
print("seqs: ", seqs)
for i, seq in enumerate(seqs):
result_queue.put([i, len(output.tolist()[i]), seq])
def speculate_read_res(
model_name_or_path,
output_tensor_max_shape,
result_queue: mp.Queue,
msg_queue_id=None,
):
"""Read result from queue."""
if msg_queue_id is None:
from fastdeploy.model_executor.ops.gpu import speculate_get_output
else:
from fastdeploy.model_executor.ops.gpu import \
speculate_get_output_dynamic
tokenizer = ErnieBotTokenizer.from_pretrained(model_name_or_path)
paddle.device.set_device("cpu")
paddle.disable_static()
output_tensor = paddle.full(output_tensor_max_shape,
fill_value=2,
dtype="int64")
while True:
outputs = []
for _ in range(MAX_BSZ):
outputs.append([])
while True:
if msg_queue_id is None:
speculate_get_output(output_tensor, 0, True)
else:
speculate_get_output_dynamic(output_tensor, 0, True,
msg_queue_id)
if int(output_tensor[0]) == -2: # read none
continue
bsz = int(output_tensor[1])
accept_num = output_tensor[2:bsz + 2].numpy()
for bi in range(bsz):
outputs[bi].extend(
output_tensor.numpy()[2 + MAX_BSZ +
bi * MAX_DRAFT_TOKENS:2 + MAX_BSZ +
bi * MAX_DRAFT_TOKENS +
accept_num[bi]].tolist())
if int(output_tensor[0]) == -1:
break
seqs = tokenizer.batch_decode(
outputs,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
for i in range(bsz):
result_queue.put([i, len(outputs[i]), seqs[i]])
def calculate_effective_tokens(training_args, train_dataset, max_seq_len):
"""
Calculate the effective tokens during training.
"""
total_effective_tokens = 0
try:
data_parallel_degree = training_args.data_parallel_degree
except Exception:
data_parallel_degree = 1
if training_args.sharding_parallel_degree > 1:
sharding_parallel_degree = training_args.sharding_parallel_degree
else:
sharding_parallel_degree = 1
total_batch = (training_args.max_steps *
training_args.per_device_train_batch_size *
training_args.gradient_accumulation_steps *
sharding_parallel_degree * data_parallel_degree)
for i, data in enumerate(train_dataset):
if i == total_batch:
break
for dd in data:
total_effective_tokens += len(dd.token_ids)
total_tokens = total_batch * max_seq_len
return total_effective_tokens, total_tokens
def estimate_training(train_dataset, data_args, training_args, model_args):
"""
根据训练数据估算训练所需的步数。
Args:
- None
Returns:
- dict: 返回一个字典,包含了训练所需的步骤数信息。
"""
train_dataset.estimate = True
logger.info("Start to estimate max training steps...")
with open(data_args.train_task_config) as f:
train_task_group = json.load(f)
if len(train_task_group) > 1:
logger.warning(
"Suggest to use max_steps instead of num_train_epochs for multi source dataset."
)
logger.info(
"Multi source dataset detected, number of samples will be estimated by following rule. "
"num_samples = (source1_num_samples * prob1 + source2_num_samples * prob2 + ...) * epochs"
)
max_samples = train_dataset.max_estimate_samples
if training_args.max_estimate_samples != -1:
# Set estimate samples to max_estimate_samples
logger.warning(
"The results between sampling and non-sampling methods may differ."
)
train_dataset.max_estimate_samples = min(
training_args.max_estimate_samples,
train_dataset.max_estimate_samples)
if train_dataset.max_estimate_samples > 0:
train_batches = 0
train_tokens = 0
for sequences in train_dataset:
if not train_dataset.estimate:
break
train_batches += 1
for sequence in sequences:
train_tokens += len(sequence.token_ids)
train_tokens *= training_args.num_train_epochs
train_batches *= training_args.num_train_epochs
global_batch_size = (training_args.per_device_train_batch_size *
training_args.gradient_accumulation_steps *
max(training_args.data_parallel_degree, 1) *
max(training_args.sharding_parallel_degree, 1))
max_steps = int(np.ceil(train_batches / global_batch_size))
if max_samples != train_dataset.max_estimate_samples:
max_steps *= max_samples / train_dataset.max_estimate_samples
train_tokens *= max_samples / train_dataset.max_estimate_samples
train_dataset.used_samples *= (max_samples /
train_dataset.max_estimate_samples)
train_dataset.unused_samples *= (
max_samples / train_dataset.max_estimate_samples)
res = {
"num_train_epochs":
int(training_args.num_train_epochs),
"max_steps":
int(np.ceil(max_steps)),
"train_tokens":
int(train_tokens),
"global_batch_size":
int(global_batch_size),
"gradient_accumulation_steps":
training_args.gradient_accumulation_steps,
"warmup_steps":
int(np.ceil(0.1 * max_steps)),
"per_device_train_batch_size":
int(training_args.per_device_train_batch_size),
"tensor_parallel_degree":
int(training_args.tensor_parallel_degree),
"pipeline_parallel_degree":
int(training_args.pipeline_parallel_degree),
"sharding_parallel_degree":
int(training_args.sharding_parallel_degree),
"seed":
training_args.seed,
"num_samples_each_epoch":
data_args.num_samples_each_epoch,
"example_from_same_task_prob":
data_args.example_from_same_task_prob,
"pseudo_sampling_prob":
data_args.pseudo_sampling_prob,
"trigger_data_prob":
data_args.trigger_data_prob,
"max_seq_len":
int(data_args.max_seq_len),
"valid":
True,
"train_samples":
int(max_samples * training_args.num_train_epochs),
"estimate_samples":
int(train_dataset.max_estimate_samples),
"actual_train_samples":
int(train_dataset.used_samples * training_args.num_train_epochs),
"skip_samples":
int(train_dataset.unused_samples * training_args.num_train_epochs),
}
if hasattr(training_args, "num_of_gpus"):
res["num_of_gpus"] = training_args.num_of_gpus
if train_batches / training_args.num_train_epochs / global_batch_size < 1:
logger.warning(
"This dataset is too small, you'd better enlarge your dataset."
)
res["valid"] = False
if getattr(training_args, "estimation_output_file", None):
with open(training_args.estimation_output_file,
"w",
encoding="utf-8") as f:
json.dump(res, f)
return max_steps
else:
res = {
"num_train_epochs":
int(training_args.num_train_epochs),
"max_steps":
0,
"gradient_accumulation_steps":
training_args.gradient_accumulation_steps,
"train_tokens":
0,
"per_device_train_batch_size":
int(training_args.per_device_train_batch_size),
"tensor_parallel_degree":
int(training_args.tensor_parallel_degree),
"pipeline_parallel_degree":
int(training_args.pipeline_parallel_degree),
"sharding_parallel_degree":
int(training_args.sharding_parallel_degree),
"num_samples_each_epoch":
data_args.num_samples_each_epoch,
"example_from_same_task_prob":
data_args.example_from_same_task_prob,
"pseudo_sampling_prob":
data_args.pseudo_sampling_prob,
"trigger_data_prob":
data_args.trigger_data_prob,
"max_seq_len":
int(data_args.max_seq_len),
"seed":
data_args.seed,
"valid":
False,
"train_samples":
0,
}
if hasattr(training_args, "num_of_gpus"):
res["num_of_gpus"] = training_args.num_of_gpus
if getattr(training_args, "estimation_output_file", None):
with open(training_args.estimation_output_file,
"w",
encoding="utf-8") as f:
json.dump(res, f)
logger.error("No valid data found, please check your dataset format.")
return 0
def get_w4a8_gemm_config_tuple(file_root_path):
"""读取预配置的gemm 配置表
Args:
file_root_path (str): the directory of w4a8_gemm_config files
"""
def get_gemm_config_tuple_from_file(file):
gemm_tuple_list = []
for line in file:
line_split = line.split(" ")
gemm_tuple_list.append([
int(line_split[1]),
int(line_split[2]),
int(line_split[3]),
int(line_split[4]),
int(line_split[5]),
int(line_split[6]),
int(line_split[7]),
])
gemm_tuple_list.sort(key=lambda x: x[0])
gemm_tuple_numpy = np.array(gemm_tuple_list, dtype="int32")
gemm_tuple_numpy = gemm_tuple_numpy.flatten()
return gemm_tuple_numpy
qkv_gemm_config_tuple = []
out_linear_gemm_config_tuple = []
ffn1_gemm_config_tuple = []
ffn2_gemm_config_tuple = []
try:
qkv_tuned_gemm_config_log_path = os.path.join(
f"{file_root_path}", "qkv_tuned_gemm_config.log")
with open(qkv_tuned_gemm_config_log_path) as file:
qkv_gemm_config_tuple = get_gemm_config_tuple_from_file(file)
out_linear_tuned_gemm_config_log_path = os.path.join(
f"{file_root_path}", "out_linear_tuned_gemm_config.log")
with open(out_linear_tuned_gemm_config_log_path) as file:
out_linear_gemm_config_tuple = get_gemm_config_tuple_from_file(
file)
ffn1_tuned_gemm_config_log_path = os.path.join(
f"{file_root_path}", "ffn1_tuned_gemm_config.log")
with open(ffn1_tuned_gemm_config_log_path) as file:
ffn1_gemm_config_tuple = get_gemm_config_tuple_from_file(file)
ffn2_tuned_gemm_config_log_path = os.path.join(
f"{file_root_path}", "ffn2_tuned_gemm_config.log")
with open(ffn2_tuned_gemm_config_log_path) as file:
ffn2_gemm_config_tuple = get_gemm_config_tuple_from_file(file)
except Exception:
logger.warning(
"Found gemm config for W4A8 failed, using empty gemm tuple list for W4A8"
)
w4a8_gemm_config = {}
w4a8_gemm_config["qkv_gemm_config_tuple"] = qkv_gemm_config_tuple
w4a8_gemm_config[
"out_linear_gemm_config_tuple"] = out_linear_gemm_config_tuple
w4a8_gemm_config["ffn1_gemm_config_tuple"] = ffn1_gemm_config_tuple
w4a8_gemm_config["ffn2_gemm_config_tuple"] = ffn2_gemm_config_tuple
return w4a8_gemm_config
def update_refined_recompute(rr, sequence_parallel, lora=False):
"""update refined recompute dict."""
# if rr is a dict, return it directly
if isinstance(rr, dict):
return rr
if rr == "":
return {}
else:
rr_res = {
"mlp_row_ln": 0,
"attention_row_ln": 0,
"attention_column_ln": 0,
"mlp_column_ln": 0,
"flash_attn": 0,
}
ops = rr.split(",")
for op in ops:
if ":" not in op:
raise ValueError(
"Illegal refined_recompute input, please check.")
op_name, skip_num = op.split(":")[0], int(op.split(":")[1])
if op_name not in rr_res:
raise ValueError(
f"Refined recompute do not support {op_name}, please check."
)
if op_name in [
"mlp_row_ln",
"attention_row_ln",
"attention_column_ln",
"mlp_column_ln",
]:
if not sequence_parallel:
logger.warning(
f"Currently, the `{op_name}` op is only supported "
"when `sequence_parallel=True`. This refined recompute op will be ignored."
)
continue
if lora:
logger.warning(
"Currently, LoRA does not support refined recompute "
f"for the `{op_name}` op. This refined recompute op will be ignored."
)
continue
rr_res[op_name] = skip_num
return rr_res
def model_convert_fp8(model_path, device=None):
"""
Convert a model checkpoint from bf16/fp16 to fp8 format.
Args:
model_path (str): The path to the directory containing the model checkpoint files
(e.g., config.json and model_state.pdparams).
device (str, optional): The device to set for paddle, such as 'cpu' or 'gpu'.
If None, the default device is used.
Note:
This function requires non-smooth quantization 'act_scales' to be applied when using the converted model.
"""
if device is not None:
paddle.device.set_device(device)
config_path = os.path.join(model_path, "config.json")
with open(config_path, "r") as model_config_file:
model_config = json.load(model_config_file)
nums_layers = model_config["num_layers"]
weight_scales_path = os.path.join(model_path, "weight_scales_0.json")
with open(weight_scales_path, "r") as weight_scales_file:
weight_scales = json.load(weight_scales_file)
if "ernie.decoder.layers." + str(
0) + ".gate.weight_quanter" in weight_scales:
logger.info("FP8 model checkpoint already converted")
return
else:
logger.info("Converting model checkpoint to fp8...")
ffn1_weights_name = ".linear1.weight"
ffn1_bias_name = ".linear1.bias"
gate_weights_name = ".gate.weight"
up_weights_name = ".up.weight"
gate_bias_name = ".gate.bias"
up_bias_name = ".up.bias"
params_states = paddle.load(
os.path.join(model_path, "model_state.pdparams"))
new_path = os.path.join(model_path, "model_state.pdparams")
for i in range(0, nums_layers):
ffn1_weights = params_states["ernie.decoder.layers." + str(i) +
ffn1_weights_name]
ffn1_weights_0 = ffn1_weights[:, ::2]
ffn1_weights_1 = ffn1_weights[:, 1::2]
ffn1_weights_0_range = paddle.abs(ffn1_weights_0).max()
ffn1_weights_1_range = paddle.abs(ffn1_weights_1).max()
weight_scales["ernie.decoder.layers." + str(i) +
".gate.weight_quanter"] = (paddle.cast(
ffn1_weights_0_range, "float").numpy().tolist())
weight_scales["ernie.decoder.layers." + str(i) +
".up.weight_quanter"] = (paddle.cast(
ffn1_weights_1_range, "float").numpy().tolist())
params_states["ernie.decoder.layers." + str(i) +
gate_weights_name] = (ffn1_weights_0 * 448 /
ffn1_weights_0_range)
params_states["ernie.decoder.layers." + str(i) +
up_weights_name] = (ffn1_weights_1 * 448 /
ffn1_weights_1_range)
del params_states["ernie.decoder.layers." + str(i) + ffn1_weights_name]
ffn1_bias = params_states["ernie.decoder.layers." + str(i) +
ffn1_bias_name]
params_states["ernie.decoder.layers." + str(i) +
gate_bias_name] = ffn1_bias[::2]
params_states["ernie.decoder.layers." + str(i) +
up_bias_name] = ffn1_bias[1::2]
del params_states["ernie.decoder.layers." + str(i) + ffn1_bias_name]
with open(model_path + "/weight_scales_0.json", "w") as weight_scales_file:
json.dump(weight_scales, weight_scales_file)
paddle.save(params_states, new_path)
def load_ep_checkpoint(model_path, config, return_numpy=False, return_key_name=True):
"""
load ep checkpoint
"""
if return_key_name:
merge_path = os.path.join(model_path, "merged_tp1_state_split")
if os.path.isdir(merge_path):
# load keyname
state_dicts = []
files = glob.glob(model_path + "/merged_tp1_state_split/*")
for file_name in files:
try:
state_dicts += [
{file_name.split("/")[-1]: file_name}
] # save {layer_name: weight_file_name}
except Exception:
pass
new_state_dict = {}
for state_dict in state_dicts:
for key, value in state_dict.items():
new_state_dict[key] = value
state_dict = new_state_dict
else:
with open(
os.path.join(model_path, "model.safetensors.index.json"), "r"
) as f:
weight_map = json.load(f)["weight_map"]
state_dict = {
k: "[" + k + "]" + os.path.join(model_path, v)
for k, v in weight_map.items()
}
return state_dict
else:
# return_numpy=True cpu
# return_numpy=False gpu
with open(os.path.join(model_path, "model.safetensors.index.json"), "r") as f:
weight_list = json.load(f)["weight_map"]
filtered_map = {k: v for k, v in weight_list.items() if "experts" not in k}
num_local_ffn_keys = []
quant_suffix = (
"quant_weight"
if config.use_offline_quant and config.moe_quant_type != "default"
else ""
)
scale_suffix = (
"quant_scale"
if config.use_offline_quant and config.moe_quant_type != "default"
else ""
)
for i in range(config.moe_layer_start_index, config.num_layers):
for j in range(
config.num_experts_start_offset,
config.num_experts_start_offset + config.num_experts_per_rank,
):
ffn1_quant_key = f"ernie.layers.{i}.mlp.experts.{j}.up_gate_proj.weight.{quant_suffix}"
ffn2_quant_key = (
f"ernie.layers.{i}.mlp.experts.{j}.down_proj.weight.{quant_suffix}"
)
ffn1_scale_key = f"ernie.layers.{i}.mlp.experts.{j}.up_gate_proj.weight.{scale_suffix}"
ffn2_scale_key = (
f"ernie.layers.{i}.mlp.experts.{j}.down_proj.weight.{scale_suffix}"
)
num_local_ffn_keys.append(ffn1_quant_key)
num_local_ffn_keys.append(ffn2_quant_key)
num_local_ffn_keys.append(ffn1_scale_key)
num_local_ffn_keys.append(ffn2_scale_key)
for k in num_local_ffn_keys:
if k in weight_list:
filtered_map[k] = weight_list[k]
state_dict = {}
for k, safetensor_path in filtered_map.items():
with safe_open(
os.path.join(model_path, safetensor_path), framework="np", device="cpu"
) as f:
if k in f.keys():
weight = f.get_tensor(k)
if not return_numpy:
weight = paddle.Tensor(weight, zero_copy=True)
weight = weight._copy_to(
paddle.framework._current_expected_place(), False
)
state_dict[k] = weight
return state_dict
def get_safe_tensor_file(model_path):
"""
get_safe_tensor_file
"""
with open(os.path.join(model_path, "model.safetensors.index.json"),
"r") as f:
weight_map = json.load(f)["weight_map"]
safe_tensor_list = list(set(weight_map.values()))
key_name_list = list(set(weight_map.keys()))
safe_tensor_list = [os.path.join(model_path, v) for v in safe_tensor_list]
return key_name_list, safe_tensor_list
def safetensors_weights_iterator(safe_tensor_list: list[str], ):
"""
safetensors_weights_iterator
"""
for st_file in tqdm(
safe_tensor_list,
desc="Loading safetensors checkpoint shards",
):
with safe_open(st_file, framework="np") as f:
for name in f.keys():
param = f.get_tensor(name)
yield name, param
def get_state_dict(model_path, config):
"""
get_sate_dict
"""
state_dict = {}
_, safe_tensor_list = get_safe_tensor_file(
os.path.join(model_path, f"rank{config.tensor_parallel_rank}"))
weights_iterator = safetensors_weights_iterator(safe_tensor_list)
for name, weight in weights_iterator:
state_dict[name] = weight
return state_dict
def load_checkpoint(model_path, cls, config, return_numpy=True):
"""
load checkpoint
"""
if config.use_ep:
state_dict = load_ep_checkpoint(
model_path, config, return_numpy=True, return_key_name=True
)
else:
rank_dirs = [
f
for f in os.listdir(model_path)
if f.startswith("rank") and os.path.isdir(os.path.join(model_path, f))
]
if len(rank_dirs) > 1:
if config.tensor_parallel_degree != len(rank_dirs):
raise ValueError(
f"Your model only supports loading with tp{len(rank_dirs)}"
)
state_dict = get_state_dict(model_path, config)
else:
state_dict = load_tp_checkpoint(
model_path, cls, config, return_numpy=return_numpy
)
return state_dict
def parser_quant_type(quant_type):
"""
Parse the quantization type string and return the corresponding quantization types for weights,
activations, and custom.
Args:
quant_type (str): The quantization type string. It can be one of the following formats:
- "weight_only_int8" or "wint8": Only weights are quantized to int8.
- "weight_only_int4" or "wint4": Only weights are quantized to int4.
- A custom string in the format of "wxaybzcfp8", where 'x', 'y', 'z' are the quantization bitwidths
for weights, activations, and custom respectively,
and 'a', 'b', 'c' are the prefixes indicating the quantization types
(e.g., 'fp8' for floating-point 8-bit).
If a prefix is missing, the default quantization type will be used.
Returns:
tuple: A tuple of three strings representing the quantization types for weights, activations,
and custom respectively.
If the input is "weight_only_int8" or "wint8", returns ("int8", default_type, default_type).
If the input is "weight_only_int4" or "wint4", returns ("int4", default_type, default_type).
For custom strings, returns the parsed quantization types based on the input format.
Raises:
AssertionError: If the custom quantization type string format is incorrect.
"""
default_type = paddle.get_default_dtype()
conver_dict = {
"8": "int8",
"4": "int4",
"16": paddle.get_default_dtype,
"fp8": "float8_e4m3fn",
"fp16": "float16",
"bf16": "bfloat16",
"fp32": "float32"
}
cache_type = default_type
if "c8" in quant_type:
cache_type = "int8"
elif "cfp8" in quant_type:
cache_type = "fp8"
elif "c4" in quant_type:
cache_type = "int4"
if "weight_only_int8" in quant_type or "wint8" in quant_type:
return "int8", default_type, cache_type
elif "weight_only_int4" in quant_type or "wint4" in quant_type:
return "int4", default_type, cache_type
else:
# split quant type, eg. w4afp8c8 -> ['w', '4', 'a', 'fp8', 'c', '8']
pattern = f"({'|'.join(map(re.escape, ['w', 'a', 'c']))})"
splited_type = re.split(pattern, quant_type)
splited_type = [tmp_type for tmp_type in splited_type if tmp_type]
assert (len(splited_type) % 2 == 0 and len(splited_type)
<= 6), f"Quant type[{quant_type}] format error."
quant_type_list = []
if "w" in splited_type:
w_idx = splited_type.index("w")
quant_type_list.append(conver_dict[splited_type[w_idx + 1]])
else:
quant_type_list.append(default_type)
if "a" in splited_type:
a_idx = splited_type.index("a")
quant_type_list.append(conver_dict[splited_type[a_idx + 1]])
else:
quant_type_list.append(default_type)
if "c" in splited_type:
c_idx = splited_type.index("c")
quant_type_list.append(conver_dict[splited_type[c_idx + 1]])
else:
quant_type_list.append(default_type)
return quant_type_list[0], quant_type_list[1], quant_type_list[2]