Files
FastDeploy/fastdeploy/model_executor/layers/quantization/w8a8.py
2025-06-09 19:20:15 +08:00

110 lines
3.9 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
from paddlenlp.utils.log import logger
import fastdeploy
from fastdeploy.platforms.utils import convert_to_npu_dequant_scale
from .quant_base import QuantConfigBase, QuantMethodBase
class W8A8Config(QuantConfigBase):
"""
quantization config for weight 8bits and activation 8bits
"""
def __init__(self, weight_scale_dict, act_scale_dict,
use_gemm_dequant) -> None:
super().__init__()
self.weight_scale_dict = weight_scale_dict
self.act_scale_dict = act_scale_dict
self.use_gemm_dequant = use_gemm_dequant
def get_name(self) -> str:
return "w8a8"
@classmethod
def from_config(cls, config: dict) -> "W8A8Config":
weight_scale_dict = config["weight_scale_dict"]
act_scale_dict = config["act_scale_dict"]
use_gemm_dequant = config["use_gemm_dequant"]
return cls(weight_scale_dict, act_scale_dict, use_gemm_dequant)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
return W8A8LinearMethod(self)
class W8A8LinearMethod(QuantMethodBase):
"""
quantization method for weight 8bits and activation 8bits of linear layer
"""
def __init__(
self,
quant_config: W8A8Config,
) -> None:
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer):
weight_scale = self.quant_config.weight_scale_dict.get(
layer.prefix + ".weight_quanter")
in_scale = self.quant_config.act_scale_dict.get(layer.prefix +
".activation_quanter")
self.skip_quant = False
if weight_scale is None or in_scale is None:
self.skip_quant = True
return
max_range = 127.0
linear_out_scale = paddle.to_tensor(
weight_scale /
(max_range * max_range * in_scale)).astype("float32")
layer.linear_out_scale = layer.create_parameter(
shape=[layer.embed_dim],
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.linear_out_scale.set_value(
convert_to_npu_dequant_scale(linear_out_scale))
def process_loaded_weights(self, layer, weights) -> None:
if self.skip_quant:
logger.debug(f"{layer.prefix} skip quant")
weight_tensor = weights.cast(layer._dtype)
layer.linear_weight.set_value(weight_tensor)
else:
weight_tensor = weights.transpose([1, 0])
weight_tensor = paddle.cast(weight_tensor, layer.weight_dtype)
layer.linear_weight.set_value(weight_tensor)
def apply(self, layer, x):
if self.skip_quant:
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
return linear_out
if self.quant_config.use_gemm_dequant:
linear_out = fastdeploy.model_executor.ops.gpu.gemm_dequant(
x, layer.linear_weight, layer.linear_out_scale, layer._dtype)
else:
linear_out = paddle.matmul(x, layer.linear_weight, False, True)
linear_out = fastdeploy.model_executor.ops.gpu.dequant_int8(
linear_out, layer.linear_out_scale, layer._dtype)
return linear_out