Files
FastDeploy/fastdeploy/model_executor/layers/quantization/kv_cache.py
2025-06-09 19:20:15 +08:00

268 lines
8.7 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from paddle import nn
import os
import paddle
from .quant_base import QuantConfigBase, QuantMethodBase
from typing import Optional
class KvCacheQuantConfig(QuantConfigBase):
"""
quantization config for weight 4bits and activation fp8
"""
def __init__(self, cachekv_scale_dict) -> None:
"""
__init__
"""
super().__init__()
self.cachekv_scale_dict = cachekv_scale_dict
def get_name(self) -> str:
"""
get_name
"""
return "kvcache"
@classmethod
def from_config(cls, config: dict) -> "KvCacheQuantConfig":
"""
from_config
"""
cachekv_scale_dict = config["cachekv_scale_dict"]
return cls(cachekv_scale_dict)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
"""
get_quant_method
"""
return KVCacheMethodBase(self)
class KVCacheMethodBase(QuantMethodBase):
"""
KVCacheMethodBase
"""
def __init__(
self,
quant_config: KvCacheQuantConfig,
) -> None:
"""
KVCacheMethodBase __init__
"""
super().__init__()
self.quant_config = quant_config
def load_zp(self, layer: nn.Layer):
"""
load_zp
"""
if self.cache_k_zp_name in self.quant_config.cachekv_scale_dict:
cache_k_zp = paddle.cast(
paddle.to_tensor(
self.quant_config.cachekv_scale_dict[self.cache_k_zp_name]
),
self.cache_scale_dtype,
)
else:
cache_k_zp = paddle.zeros(
(
[self.kv_num_heads * self.head_dim]
if self.quant_config.is_channel_wise
else [self.kv_num_heads]
),
dtype=self.cache_scale_dtype,
)
if self.cache_v_zp_name in self.quant_config.cachekv_scale_dict:
cache_v_zp = paddle.cast(
paddle.to_tensor(
self.quant_config.cachekv_scale_dict[self.cache_v_zp_name]
),
self.cache_scale_dtype,
)
else:
cache_v_zp = paddle.zeros(
(
[self.kv_num_heads * self.head_dim]
if self.quant_config.is_channel_wise
else [self.kv_num_heads]
),
dtype=self.cache_scale_dtype,
)
layer.cache_k_zp.set_value(cache_k_zp)
layer.cache_v_zp.set_value(cache_v_zp)
def load_scale(self, layer: nn.Layer):
"""
load_scale
"""
if self.cache_k_scale_name in self.quant_config.cachekv_scale_dict:
cache_k_scale = paddle.cast(
paddle.to_tensor(
self.quant_config.cachekv_scale_dict[self.cache_k_scale_name]
),
self.cache_scale_dtype,
)
cache_k_out_scale = 1.0 / cache_k_scale
else:
raise KeyError(
f"{self.cache_k_scale_name} not found in scale dict")
if self.cache_v_scale_name in self.quant_config.cachekv_scale_dict:
cache_v_scale = paddle.cast(
paddle.to_tensor(
self.quant_config.cachekv_scale_dict[self.cache_v_scale_name]
),
self.cache_scale_dtype,
)
cache_v_out_scale = 1.0 / cache_v_scale
else:
raise KeyError(
f"{self.cache_v_scale_name} not found in scale dict")
if self.cache_v_scale_name in self.quant_config.cachekv_scale_dict:
cache_v_scale = paddle.cast(
paddle.to_tensor(
self.quant_config.cachekv_scale_dict[self.cache_v_scale_name]
),
self.cache_scale_dtype,
)
cache_v_out_scale = 1.0 / cache_v_scale
else:
raise KeyError(
f"{self.cache_v_scale_name} not found in scale dict")
layer.cache_k_scale.set_value(cache_k_scale)
layer.cache_v_scale.set_value(cache_v_scale)
layer.cache_k_out_scale.set_value(cache_k_out_scale)
layer.cache_v_out_scale.set_value(cache_v_out_scale)
def create_scale(self, layer: nn.Layer):
"""
create_scale
"""
layer.cache_k_scale = layer.create_parameter(
shape=(
[layer.kv_num_heads * layer.head_dim]
if self.quant_config.is_channel_wise
else [layer.kv_num_heads]
),
dtype=self.cache_scale_dtype,
is_bias=False,
)
layer.cache_v_scale = layer.create_parameter(
shape=(
[layer.kv_num_heads * layer.head_dim]
if self.quant_config.is_channel_wise
else [layer.kv_num_heads]
),
dtype=self.cache_scale_dtype,
is_bias=False,
)
layer.cache_k_out_scale = layer.create_parameter(
shape=(
[layer.kv_num_heads * layer.head_dim]
if self.quant_config.is_channel_wise
else [layer.kv_num_heads]
),
attr=None,
dtype=self.cache_scale_dtype,
is_bias=False,
)
layer.cache_v_out_scale = layer.create_parameter(
shape=(
[layer.kv_num_heads * layer.head_dim]
if self.quant_config.is_channel_wise
else [layer.kv_num_heads]
),
attr=None,
dtype=self.cache_scale_dtype,
is_bias=False,
)
def create_zp(self, layer: nn.Layer):
"""
create_zp
"""
layer.cache_k_zp = layer.create_parameter(
shape=(
[layer.kv_num_heads * layer.head_dim]
if self.quant_config.is_channel_wise
else [layer.kv_num_heads]
),
dtype=self.cache_scale_dtype,
is_bias=False,
)
layer.cache_v_zp = layer.create_parameter(
shape=(
[layer.kv_num_heads * layer.head_dim]
if self.quant_config.is_channel_wise
else [layer.kv_num_heads]
),
dtype=self.cache_scale_dtype,
is_bias=False,
)
def create_weights(self, layer: nn.Layer):
"""
create_weights
"""
self.prefix = layer.prefix
self.cache_k_scale_name = layer.prefix + ".cachek_matmul.activation_quanter"
self.cache_v_scale_name = layer.prefix + ".cachev_matmul.activation_quanter"
self.cache_k_zp_name = layer.cache_k_scale_name + ".zero_point"
self.cache_v_zp_name = layer.cache_v_scale_name + ".zero_point"
layer.cache_k_zp = None
layer.cache_v_zp = None
layer.cache_k_scale = None
layer.cache_v_scale = None
layer.cache_k_out_scale = None
layer.cache_v_out_scale = None
self._dtype = layer._dtype
if self._dtype != "bfloat16" and self._dtype != "float16" and self._dtype == "float32":
raise ValueError(
f"Just support float32, float16 and \
bfloat16 as default dtype, but received {self._dtype}"
)
self.cache_scale_dtype = (
self._dtype if self.quant_config.use_append_attn else "float32"
)
if not self.quant_config.use_dynamic_cachekv_quant:
if (
self.quant_config.cachekv_dtype == "int8"
or self.quant_config.cachekv_dtype == "int4"
or self.quant_config.cachekv_dtype == "float8_e4m3fn"
):
self.create_scale(layer)
self.load_scale(layer)
if self.quant_config.has_zero_point:
self.create_zp(layer)
self.load_zp(layer)
layer.cache_quant_type_str = self.quant_config.cache_quant_type
def apply(self, layer):
"""
apply
"""
raise RuntimeError(
f"{self.__class__.__name__}.apply should not be called.")