Files
FastDeploy/fastdeploy/model_executor/graph_optimization/graph_optimization_backend.py
2025-06-09 19:20:15 +08:00

62 lines
2.2 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Callable, Optional
from fastdeploy.config import LLMConfig
from fastdeploy.model_executor.graph_optimization.cudagraph_piecewise_backend import \
CudaGraphPiecewiseBackend
class GraphOptBackend:
""" """
llm_config: LLMConfig
cudagraph_piecewise_backend: Optional[CudaGraphPiecewiseBackend] = None
def __init__(self, runnable: Callable, llm_config: LLMConfig):
self.runnable = runnable
self.llm_config = llm_config
def __call__(self, **kwargs):
# 1. TODO(gongshaotian): Static graph
if self.llm_config.graph_opt_config.graph_opt_level > 0:
# 1. Prepare cuda grpah input buffers (contain output of subgraphs)
# 2. Convert dynamic grpah to static graph
if self.llm_config.graph_opt_config.graph_opt_level > 1:
# with cinn
pass
else:
# not use cinn
pass
# 3. Split the static graph and get a list of callable obj
# 4. Get piecewise cuda grpah backend list
return self.runnable # Fake return value
# 2. Dynamic graph
else:
print(self.cudagraph_piecewise_backend is None)
if self.cudagraph_piecewise_backend is None:
self.cudagraph_piecewise_backend = CudaGraphPiecewiseBackend(
llm_config=self.llm_config, runnable=self.runnable)
# TODO(gongshaotian): handling kwargs
assert kwargs["input_ids"] is not None
return self.cudagraph_piecewise_backend.__call__(**kwargs)