mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 00:33:03 +08:00
389 lines
15 KiB
Python
389 lines
15 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
""" process.py """
|
||
import copy
|
||
import io
|
||
from collections import defaultdict
|
||
from typing import Any, Dict, List, Union
|
||
|
||
import numpy as np
|
||
from paddlenlp.transformers.image_utils import ChannelDimension
|
||
from PIL import Image
|
||
|
||
|
||
|
||
from .image_preprocessor.image_preprocessor_adaptive import AdaptiveImageProcessor
|
||
from .process_video import read_frames_decord, read_video_decord
|
||
from .utils.io_utils import RAW_IMAGE_DIR, get_downloadable
|
||
from .utils.render_timestamp import render_frame_timestamp
|
||
|
||
IDS_TYPE_FLAG = {"text": 0, "image": 1, "video": 2, "audio": 3}
|
||
|
||
|
||
def fancy_print(input_ids, tokenizer, image_patch_id=None):
|
||
"""
|
||
input_ids: input_ids
|
||
tokenizer: the tokenizer of models
|
||
"""
|
||
i = 0
|
||
res = ""
|
||
text_ids = []
|
||
real_image_token_len = 0
|
||
while i < len(input_ids):
|
||
if input_ids[i] == image_patch_id:
|
||
if len(text_ids) > 0:
|
||
res += tokenizer.decode(text_ids)
|
||
text_ids = []
|
||
|
||
real_image_token_len += 1
|
||
else:
|
||
if real_image_token_len != 0:
|
||
res += f"<|IMAGE@{real_image_token_len}|>"
|
||
real_image_token_len = 0
|
||
|
||
text_ids.append(input_ids[i])
|
||
|
||
i += 1
|
||
if len(text_ids) > 0:
|
||
|
||
res += tokenizer.decode(text_ids)
|
||
text_ids = []
|
||
return res
|
||
|
||
|
||
class DataProcessor:
|
||
"""
|
||
Processes multimodal chat messages into model-ready inputs,
|
||
handling text, images, and videos with 3D positional embeddings.
|
||
"""
|
||
|
||
CLS_TOKEN = "<|begin_of_sentence|>"
|
||
SEP_TOKEN = "<|end_of_sentence|>"
|
||
IMG_START = "<|IMAGE_START|>"
|
||
IMG_END = "<|IMAGE_END|>"
|
||
VID_START = "<|VIDEO_START|>"
|
||
VID_END = "<|VIDEO_END|>"
|
||
|
||
def __init__(
|
||
self,
|
||
tokenizer_name: str,
|
||
image_preprocessor_name: str,
|
||
spatial_conv_size: int = 2,
|
||
temporal_conv_size: int = 2,
|
||
image_min_pixels: int = 4 * 28 * 28,
|
||
image_max_pixels: int = 6177 * 28 * 28,
|
||
video_min_pixels: int = 299 * 28 * 28,
|
||
video_max_pixels: int = 1196 * 28 * 28,
|
||
video_target_frames: int = -1,
|
||
video_frames_sample: str = "leading",
|
||
video_max_frames: int = 180,
|
||
video_min_frames: int = 16,
|
||
video_fps: int = 2,
|
||
) -> None:
|
||
# Tokenizer and image preprocessor
|
||
self.tokenizer = ErnieVLTokenizer.from_pretrained(tokenizer_name, verbose=False)
|
||
self.tokenizer.ignored_index = -100
|
||
self.image_preprocessor = AdaptiveImageProcessor.from_pretrained(image_preprocessor_name)
|
||
|
||
# Convolution sizes for patch aggregation
|
||
self.spatial_conv_size = spatial_conv_size
|
||
self.temporal_conv_size = temporal_conv_size
|
||
|
||
# Pixel constraints
|
||
self.image_min_pixels = image_min_pixels
|
||
self.image_max_pixels = image_max_pixels
|
||
self.video_min_pixels = video_min_pixels
|
||
self.video_max_pixels = video_max_pixels
|
||
|
||
# Video sampling parameters
|
||
self.target_frames = video_target_frames
|
||
self.frames_sample = video_frames_sample
|
||
self.max_frames = video_max_frames
|
||
self.min_frames = video_min_frames
|
||
self.fps = video_fps
|
||
|
||
# Special tokens and IDs
|
||
self.cls_token = self.CLS_TOKEN
|
||
self.sep_token = self.SEP_TOKEN
|
||
self.image_start = self.IMG_START
|
||
self.image_end = self.IMG_END
|
||
self.video_start = self.VID_START
|
||
self.video_end = self.VID_END
|
||
self.image_patch_id = self.tokenizer.convert_tokens_to_ids("<|IMAGE_PLACEHOLDER|>")
|
||
|
||
self.token_type_mapping = self._build_token_type_mapping()
|
||
self.is_training = True
|
||
self.role_prefixes = {"system": "", "user": "User: ", "bot": "Assistant: ", "assistant": "Assistant: "}
|
||
|
||
def _build_token_type_mapping(self) -> Dict[Any, int]:
|
||
mapping = defaultdict(lambda: IDS_TYPE_FLAG["text"])
|
||
for token in (self.IMG_START, self.IMG_END, self.VID_START, self.VID_END):
|
||
mapping[token] = IDS_TYPE_FLAG["image"]
|
||
mapping[self.image_patch_id] = IDS_TYPE_FLAG["image"]
|
||
return mapping
|
||
|
||
def train(self) -> None:
|
||
"""Enable training mode (produces labels)."""
|
||
self.is_training = True
|
||
|
||
def eval(self) -> None:
|
||
"""Enable evaluation mode (doesn't produce labels)."""
|
||
self.is_training = False
|
||
|
||
def process(self, messages: List[Dict[str, Any]]) -> Dict[str, Union[np.ndarray, List[np.ndarray], None]]:
|
||
"""
|
||
Convert chat messages into model inputs.
|
||
Returns a dict with input_ids, token_type_ids, position_ids, images, grid_thw, image_type_ids, labels.
|
||
"""
|
||
outputs = {
|
||
"input_ids": [],
|
||
"token_type_ids": [],
|
||
"position_ids": [],
|
||
"images": [],
|
||
"grid_thw": [],
|
||
"image_type_ids": [],
|
||
"labels": [],
|
||
"cur_position": 0,
|
||
"pic_cnt": 0,
|
||
"video_cnt": 0,
|
||
}
|
||
self._add_special_token(self.cls_token, outputs)
|
||
|
||
for msg in messages:
|
||
role = msg.get("role")
|
||
assert role in self.role_prefixes, f"Unsupported role: {role}"
|
||
prefix = self.role_prefixes[role]
|
||
if prefix:
|
||
self._add_text(prefix, outputs)
|
||
|
||
content_items = msg.get("content")
|
||
if not isinstance(content_items, list):
|
||
content_items = [content_items]
|
||
|
||
for item in content_items:
|
||
if isinstance(item, str) or item.get("type") == "text":
|
||
text = item if isinstance(item, str) else item.get("text", "")
|
||
self._add_text(text, outputs)
|
||
elif item.get("type") == "image_url" or item.get("type") == "image":
|
||
self._add_image(item, outputs)
|
||
elif item.get("type") == "video_url" or item.get("type") == "video":
|
||
self._add_video(item, outputs)
|
||
|
||
if role in ("user", "system"):
|
||
self._add_text("\n", outputs)
|
||
else:
|
||
self._add_special_token(self.sep_token, outputs)
|
||
|
||
if not self.is_training:
|
||
# Append assistant prefix in eval
|
||
self._add_text(self.role_prefixes["bot"], outputs)
|
||
|
||
return outputs
|
||
|
||
def _add_special_token(self, token: Union[str, int], outputs: Dict) -> None:
|
||
token_id = token if isinstance(token, int) else self.tokenizer.convert_tokens_to_ids(token)
|
||
outputs["input_ids"].append(token_id)
|
||
outputs["token_type_ids"].append(self.token_type_mapping[token])
|
||
pos = outputs["cur_position"]
|
||
outputs["position_ids"].append([pos] * 3)
|
||
outputs["cur_position"] += 1
|
||
|
||
def _add_text(self, text: str, outputs: Dict) -> None:
|
||
tokens = self.tokenizer.encode(text, add_special_tokens=False)["input_ids"]
|
||
outputs["input_ids"].extend(tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["text"]] * len(tokens))
|
||
|
||
start = outputs["cur_position"]
|
||
for i in range(len(tokens)):
|
||
outputs["position_ids"].append([start + i] * 3)
|
||
outputs["cur_position"] += len(tokens)
|
||
|
||
def _add_image(self, item: Dict, outputs: Dict) -> None:
|
||
url_info = item.get("image_url", {})
|
||
w = url_info.get("image_width", None)
|
||
h = url_info.get("image_height", None)
|
||
|
||
if "image" in item:
|
||
img = item["image"]
|
||
else:
|
||
url = url_info.get("url")
|
||
data = get_downloadable(url, download_dir=RAW_IMAGE_DIR, save_to_disk=False)
|
||
img = Image.open(io.BytesIO(data) if isinstance(data, bytes) else data)
|
||
|
||
if w and h:
|
||
img = img.resize((w, h))
|
||
|
||
outputs["pic_cnt"] += 1
|
||
self._add_text(f"Picture {outputs['pic_cnt']}:", outputs)
|
||
self._add_special_token(self.IMG_START, outputs)
|
||
|
||
patches_h, patches_w = self.image_preprocessor.get_smarted_resize(
|
||
img.height,
|
||
img.width,
|
||
min_pixels=self.image_min_pixels,
|
||
max_pixels=self.image_max_pixels,
|
||
)[1]
|
||
num_tokens = (patches_h * patches_w) // (self.spatial_conv_size**2)
|
||
|
||
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["image"]] * num_tokens)
|
||
|
||
pos_ids = self._compute_3d_positions(1, patches_h, patches_w, outputs["cur_position"])
|
||
outputs["position_ids"].extend(pos_ids)
|
||
outputs["cur_position"] = np.max(pos_ids) + 1
|
||
|
||
# Preprocess pixels
|
||
ret = self.image_preprocessor.preprocess(
|
||
images=[img.convert("RGB")],
|
||
do_normalize=False,
|
||
do_rescale=False,
|
||
predetermined_grid_thw=np.array([[patches_h, patches_w]]),
|
||
do_convert_rgb=True,
|
||
input_data_format=ChannelDimension.LAST,
|
||
)
|
||
outputs["images"].append(ret["pixel_values"])
|
||
outputs["grid_thw"].append(ret["image_grid_thw"])
|
||
outputs["image_type_ids"].append(0)
|
||
|
||
self._add_special_token(self.IMG_END, outputs)
|
||
|
||
def _add_video(self, item: Dict, outputs: Dict) -> None:
|
||
url_info = item.get("video_url", {})
|
||
url = url_info.get("url")
|
||
outputs["video_cnt"] += 1
|
||
self._add_text(f"Video {outputs['video_cnt']}:", outputs)
|
||
self._add_special_token(self.VID_START, outputs)
|
||
|
||
if "video" in item:
|
||
video_path = item["video"]
|
||
frames = self._load_and_process_video(video_path, item)
|
||
else:
|
||
video_path = get_downloadable(url, save_to_disk=False)
|
||
frames = self._load_and_process_video(video_path, item)
|
||
patches_h, patches_w = self.image_preprocessor.get_smarted_resize(
|
||
frames[0].height,
|
||
frames[0].width,
|
||
min_pixels=self.video_min_pixels,
|
||
max_pixels=self.video_max_pixels,
|
||
)[1]
|
||
num_frames = len(frames)
|
||
num_tokens = (num_frames * patches_h * patches_w) // (self.spatial_conv_size**2 * self.temporal_conv_size)
|
||
|
||
pixel_stack = np.stack([np.array(f.convert("RGB")) for f in frames], axis=0)
|
||
ret = self.image_preprocessor.preprocess(
|
||
images=None,
|
||
videos=pixel_stack,
|
||
do_normalize=False,
|
||
do_rescale=False,
|
||
predetermined_grid_thw=np.array([[patches_h, patches_w]] * num_frames),
|
||
do_convert_rgb=True,
|
||
input_data_format=ChannelDimension.LAST,
|
||
)
|
||
outputs["images"].append(ret["pixel_values_videos"])
|
||
outputs["grid_thw"].append(ret["video_grid_thw"])
|
||
outputs["image_type_ids"].extend([1] * num_frames)
|
||
|
||
outputs["input_ids"].extend([self.image_patch_id] * num_tokens)
|
||
outputs["token_type_ids"].extend([IDS_TYPE_FLAG["video"]] * num_tokens)
|
||
|
||
pos_ids = self._compute_3d_positions(num_frames, patches_h, patches_w, outputs["cur_position"])
|
||
outputs["position_ids"].extend(pos_ids)
|
||
outputs["cur_position"] = np.max(pos_ids) + 1
|
||
|
||
self._add_special_token(self.VID_END, outputs)
|
||
|
||
def _load_and_process_video(self, url: str, item: Dict) -> List[Image.Image]:
|
||
reader, meta, path = read_video_decord(url, save_to_disk=False)
|
||
|
||
video_frame_args = dict()
|
||
video_frame_args["fps"] = item.get("fps", self.fps)
|
||
video_frame_args["min_frames"] = item.get("min_frames", self.min_frames)
|
||
video_frame_args["max_frames"] = item.get("max_frames", self.max_frames)
|
||
video_frame_args["target_frames"] = item.get("target_frames", self.target_frames)
|
||
video_frame_args["frames_sample"] = item.get("frames_sample", self.frames_sample)
|
||
|
||
video_frame_args = self._set_video_frame_args(video_frame_args, meta)
|
||
|
||
frames_data, _, timestamps = read_frames_decord(
|
||
path,
|
||
reader,
|
||
meta,
|
||
target_frames=video_frame_args["target_frames"],
|
||
target_fps=video_frame_args["fps"],
|
||
frames_sample=video_frame_args["frames_sample"],
|
||
save_to_disk=False,
|
||
)
|
||
|
||
frames: List[Image.Image] = []
|
||
for img_array, ts in zip(frames_data, timestamps):
|
||
frames.append(render_frame_timestamp(img_array, ts))
|
||
# Ensure even number of frames for temporal conv
|
||
if len(frames) % 2 != 0:
|
||
frames.append(copy.deepcopy(frames[-1]))
|
||
return frames
|
||
|
||
def _set_video_frame_args(self, video_frame_args, video_meta):
|
||
"""
|
||
根据已知参数和优先级,设定最终的抽帧参数
|
||
"""
|
||
# 优先级:video_target_frames > (video_min_frames, video_max_frames) > video_fps
|
||
if video_frame_args["target_frames"] > 0:
|
||
if video_frame_args["fps"] >= 0:
|
||
raise ValueError("fps must be negative if target_frames is given")
|
||
if (
|
||
video_frame_args["min_frames"] > 0
|
||
and video_frame_args["target_frames"] < video_frame_args["min_frames"]
|
||
):
|
||
raise ValueError("target_frames must be larger than min_frames")
|
||
if (
|
||
video_frame_args["max_frames"] > 0
|
||
and video_frame_args["target_frames"] > video_frame_args["max_frames"]
|
||
):
|
||
raise ValueError("target_frames must be smaller than max_frames")
|
||
else:
|
||
if video_frame_args["fps"] < 0:
|
||
raise ValueError("Must provide either positive target_fps or positive target_frames.")
|
||
# 先计算在video_fps下抽到的帧数
|
||
frames_to_extract = int(video_meta["duration"] * video_frame_args["fps"])
|
||
# 判断是否在目标区间内,如果不是,则取target_frames为上界或下界
|
||
if (
|
||
video_frame_args["min_frames"] > 0
|
||
and video_frame_args["max_frames"] > 0
|
||
and video_frame_args["min_frames"] > video_frame_args["max_frames"]
|
||
):
|
||
raise ValueError("min_frames must be smaller than max_frames")
|
||
if video_frame_args["min_frames"] > 0 and frames_to_extract < video_frame_args["min_frames"]:
|
||
video_frame_args["target_frames"] = video_frame_args["min_frames"]
|
||
video_frame_args["fps"] = -1
|
||
if video_frame_args["max_frames"] > 0 and frames_to_extract > video_frame_args["max_frames"]:
|
||
video_frame_args["target_frames"] = video_frame_args["max_frames"]
|
||
video_frame_args["fps"] = -1
|
||
|
||
return video_frame_args
|
||
|
||
def _compute_3d_positions(self, t: int, h: int, w: int, start_idx: int) -> List[List[int]]:
|
||
# Downsample time if needed
|
||
t_eff = t // self.temporal_conv_size if t != 1 else 1
|
||
gh, gw = h // self.spatial_conv_size, w // self.spatial_conv_size
|
||
time_idx = np.repeat(np.arange(t_eff), gh * gw)
|
||
h_idx = np.tile(np.repeat(np.arange(gh), gw), t_eff)
|
||
w_idx = np.tile(np.arange(gw), t_eff * gh)
|
||
|
||
coords = list(zip(time_idx, h_idx, w_idx))
|
||
return [[start_idx + ti, start_idx + hi, start_idx + wi] for ti, hi, wi in coords]
|