mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 00:06:38 +08:00
454 lines
15 KiB
C++
454 lines
15 KiB
C++
/******************************************************************************
|
|
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
|
|
******************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <thrust/host_vector.h>
|
|
#include <thrust/device_vector.h>
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <cuda_fp16.h>
|
|
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
|
#include <cuda_bf16.h>
|
|
#endif
|
|
|
|
#include <cute/tensor.hpp>
|
|
#include <cute/arch/cluster_sm90.hpp> // For cute::elect_one_sync()
|
|
|
|
#include <cutlass/array.h>
|
|
#include <cutlass/cutlass.h>
|
|
#include <cutlass/numeric_conversion.h>
|
|
#include <cutlass/numeric_types.h>
|
|
|
|
using namespace cute;
|
|
|
|
template<typename T>
|
|
struct PackedHalf;
|
|
|
|
template<>
|
|
struct PackedHalf<cutlass::half_t> {
|
|
using Type = __half2;
|
|
};
|
|
|
|
template<>
|
|
struct PackedHalf<cutlass::bfloat16_t> {
|
|
using Type = nv_bfloat162;
|
|
};
|
|
|
|
template<typename T>
|
|
__forceinline__ __device__ auto float_2_half2(const float x) {
|
|
if constexpr (std::is_same<T, cutlass::half_t>::value) {
|
|
return __float2half2_rn(x);
|
|
} else {
|
|
return __float2bfloat162_rn(x);
|
|
}
|
|
}
|
|
|
|
|
|
struct uint16 {
|
|
uint4 u;
|
|
uint4 v;
|
|
uint4 s;
|
|
uint4 t;
|
|
};
|
|
|
|
|
|
struct uint8 {
|
|
uint4 u;
|
|
uint4 v;
|
|
};
|
|
|
|
template<int BYTES>
|
|
struct BytesToType {};
|
|
|
|
template<>
|
|
struct BytesToType<64> {
|
|
using Type = uint16;
|
|
static_assert(sizeof(Type) == 64);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<32> {
|
|
using Type = uint8;
|
|
static_assert(sizeof(Type) == 32);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<16> {
|
|
using Type = uint4;
|
|
static_assert(sizeof(Type) == 16);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<8> {
|
|
using Type = uint64_t;
|
|
static_assert(sizeof(Type) == 8);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<4> {
|
|
using Type = uint32_t;
|
|
static_assert(sizeof(Type) == 4);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<2> {
|
|
using Type = uint16_t;
|
|
static_assert(sizeof(Type) == 2);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<1> {
|
|
using Type = uint8_t;
|
|
static_assert(sizeof(Type) == 1);
|
|
};
|
|
|
|
template<typename Elt_type, uint32_t NUM_ELT>
|
|
struct Vec {
|
|
|
|
enum { BYTES = NUM_ELT * sizeof(Elt_type) };
|
|
|
|
using Vec_type = typename BytesToType<BYTES>::Type;
|
|
|
|
using Alias_type = union {
|
|
Vec_type vec;
|
|
Elt_type elt[NUM_ELT];
|
|
};
|
|
|
|
Alias_type data;
|
|
|
|
inline __device__ Vec() {}
|
|
|
|
template<typename S>
|
|
inline __device__ void to(Vec<S, NUM_ELT> &other) {
|
|
#pragma unroll
|
|
for( int it = 0; it < NUM_ELT; it++ ) {
|
|
other.data.elt[it] = S(this->data.elt[it]);
|
|
}
|
|
}
|
|
|
|
template<typename Op>
|
|
inline __device__ void assign(const Op &op) {
|
|
#pragma unroll
|
|
for( int it = 0; it < NUM_ELT; it++ ) {
|
|
this->data.elt[it] = op(it);
|
|
}
|
|
}
|
|
|
|
inline __device__ void load_from(const void *base_ptr) {
|
|
this->data.vec = *reinterpret_cast<const Vec_type *>(base_ptr);
|
|
}
|
|
|
|
|
|
inline __device__ void store_to(void *base_ptr) {
|
|
*reinterpret_cast<Vec_type *>(base_ptr) = this->data.vec;
|
|
}
|
|
|
|
inline __device__ void add(const Vec<Elt_type, NUM_ELT> &other) {
|
|
static_assert(NUM_ELT % 2 == 0);
|
|
using type = typename PackedHalf<Elt_type>::Type;
|
|
#pragma unroll
|
|
for (int it = 0; it < NUM_ELT / 2; it++) {
|
|
type b = *reinterpret_cast<const type *>(other.data.elt + it * 2);
|
|
*reinterpret_cast<type *>(this->data.elt + it * 2) += b;
|
|
}
|
|
}
|
|
|
|
inline __device__ void fma(const Vec<Elt_type, NUM_ELT> &scale, const Vec<Elt_type, NUM_ELT> &bias) {
|
|
static_assert(NUM_ELT % 2 == 0);
|
|
using type = typename PackedHalf<Elt_type>::Type;
|
|
#pragma unroll
|
|
for (int it = 0; it < NUM_ELT / 2; it++) {
|
|
type a = *reinterpret_cast<const type *>(scale.data.elt + it * 2);
|
|
type b = *reinterpret_cast<const type *>(bias.data.elt + it * 2);
|
|
*reinterpret_cast<type *>(this->data.elt + it * 2) += a * b;
|
|
}
|
|
}
|
|
|
|
inline __device__ void set_zero() {
|
|
constexpr int size = sizeof(Vec_type) / sizeof(int);
|
|
#pragma unroll
|
|
for (int i = 0; i < size; ++i) {
|
|
(reinterpret_cast<int *>(this->data.elt))[i] = 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename T, int PackSize>
|
|
inline __device__ void apply_rotary_embedding(Vec<T, PackSize>& vec, Vec<float, PackSize / 2>& cos, Vec<float, PackSize / 2>& sin) {
|
|
static_assert(PackSize % 2 == 0);
|
|
#pragma unroll
|
|
for (int i = 0; i < PackSize / 2; i++) {
|
|
const float cos_inv_freq = cos.data.elt[i];
|
|
const float sin_inv_freq = sin.data.elt[i];
|
|
const float v1 = static_cast<float>(vec.data.elt[2 * i]);
|
|
const float v2 = static_cast<float>(vec.data.elt[2 * i + 1]);
|
|
vec.data.elt[2 * i] = static_cast<T>(cos_inv_freq * v1 - sin_inv_freq * v2);
|
|
vec.data.elt[2 * i + 1] = static_cast<T>(sin_inv_freq * v1 + cos_inv_freq * v2);
|
|
}
|
|
}
|
|
|
|
template <typename Tensor>
|
|
__forceinline__ __device__ void app_mask(
|
|
Tensor &tSrS,
|
|
const int *mask,
|
|
const int &mask_row_id,
|
|
const int &col_base) {
|
|
const float mask_value = -1000000.0f;
|
|
for (int i = 0; i < size(tSrS); i+=8) {
|
|
const int col = i * 2 + col_base;
|
|
if (col >= mask[mask_row_id]) {
|
|
tSrS(i) = mask_value;
|
|
}
|
|
if (col + 1 >= mask[mask_row_id]) {
|
|
tSrS(i + 1) = mask_value;
|
|
}
|
|
if (col >= mask[mask_row_id + 8]) {
|
|
tSrS(i + 2) = mask_value;
|
|
}
|
|
if (col + 1 >= mask[mask_row_id + 8]) {
|
|
tSrS(i + 3) = mask_value;
|
|
}
|
|
if (col + 8 >= mask[mask_row_id]) {
|
|
tSrS(i + 4) = mask_value;
|
|
}
|
|
if (col + 9 >= mask[mask_row_id]) {
|
|
tSrS(i + 5) = mask_value;
|
|
}
|
|
if (col + 8 >= mask[mask_row_id + 8]) {
|
|
tSrS(i + 6) = mask_value;
|
|
}
|
|
if (col + 9 >= mask[mask_row_id + 8]) {
|
|
tSrS(i + 7) = mask_value;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
struct HalfMax;
|
|
template<>
|
|
struct HalfMax<cutlass::half_t> {
|
|
inline __device__ __half2 operator()(const __half2 x, const __half2 y) {
|
|
__half2 res;
|
|
asm volatile("max.f16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct HalfMax<cutlass::bfloat16_t> {
|
|
inline __device__ nv_bfloat162 operator()(const nv_bfloat162 x, const nv_bfloat162 y) {
|
|
nv_bfloat162 res;
|
|
asm volatile("max.bf16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct HalfMin;
|
|
template<>
|
|
struct HalfMin<cutlass::half_t> {
|
|
inline __device__ __half2 operator()(const __half2 x, const __half2 y) {
|
|
__half2 res;
|
|
asm volatile("min.f16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct HalfMin<cutlass::bfloat16_t> {
|
|
inline __device__ nv_bfloat162 operator()(const nv_bfloat162 x, const nv_bfloat162 y) {
|
|
nv_bfloat162 res;
|
|
asm volatile("min.bf16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template <bool Is_even_MN=true, typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Engine2, typename Layout2>
|
|
__forceinline__ __device__ void copy(
|
|
TiledCopy tiled_copy, Tensor<Engine0, Layout0> const &S,
|
|
Tensor<Engine1, Layout1> &D,
|
|
Tensor<Engine2, Layout2> const &identity_MN,
|
|
const int max_MN = 0) {
|
|
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
|
|
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
|
|
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
|
|
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
|
|
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(S); ++m) {
|
|
if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size<2>(S); ++k) {
|
|
cute::copy(tiled_copy, S(_, m, k), D(_, m, k));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename To_type, typename Engine, typename Layout>
|
|
inline __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
|
|
using From_type = typename Engine::value_type;
|
|
constexpr int numel = decltype(size(tensor))::value;
|
|
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
|
|
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
|
|
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
|
|
}
|
|
|
|
template<typename T, typename ReductionOp, int block_size>
|
|
__inline__ __device__ T BlockAllReduce(T val) {
|
|
typedef cub::BlockReduce<T, block_size> BlockReduce;
|
|
__shared__ typename BlockReduce::TempStorage temp_storage;
|
|
__shared__ T result_broadcast;
|
|
T result = BlockReduce(temp_storage).Reduce(val, ReductionOp());
|
|
if (threadIdx.x == 0) { result_broadcast = result; }
|
|
__syncthreads();
|
|
return result_broadcast;
|
|
}
|
|
|
|
template<typename T, int block_size>
|
|
__inline__ __device__ T BlockScanSum(T val) {
|
|
typedef cub::BlockScan<int, block_size> BlockScanT;
|
|
__shared__ typename BlockScanT::TempStorage temp_storage;
|
|
|
|
int aggregate;
|
|
BlockScanT(temp_storage).ExclusiveSum(val, val, aggregate);
|
|
__syncthreads();
|
|
return val;
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
struct MaxOp {
|
|
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
|
|
};
|
|
|
|
template <>
|
|
struct MaxOp<float> {
|
|
// This is slightly faster
|
|
__device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct MinOp {
|
|
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x < y ? x : y; }
|
|
};
|
|
|
|
template <>
|
|
struct MinOp<float> {
|
|
// This is slightly faster
|
|
__device__ __forceinline__ float operator()(float const &x, float const &y) { return min(x, y); }
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
struct SumOp {
|
|
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
|
|
};
|
|
|
|
template<typename MMA_traits, typename Layout>
|
|
__forceinline__ __device__ auto convert_layout_acc_Aregs(Layout acc_layout) {
|
|
using X = Underscore;
|
|
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
|
|
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
|
|
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
static_assert(decltype(rank(get<0>(acc_layout)))::value == 3);
|
|
auto l = logical_divide(get<0>(acc_layout), Shape<X, X, _2>{}); // (2, 2, (2, N / 16)))
|
|
return make_layout(make_layout(get<0>(l), get<1>(l), get<2, 0>(l)), get<1>(acc_layout), make_layout(get<2, 1>(l), get<2>(acc_layout)));
|
|
} else { // SM80
|
|
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
constexpr int mma_shape_K = get<2>(typename MMA_traits::Shape_MNK{});
|
|
static_assert(mma_shape_K == 8 || mma_shape_K == 16);
|
|
if constexpr (mma_shape_K == 8) {
|
|
return acc_layout;
|
|
} else {
|
|
auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
|
|
return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
|
|
}
|
|
}
|
|
};
|
|
|
|
template <bool zero_init=false, int wg_wait=0, bool arrive=true, bool commit=true, typename Tensor0, typename Tensor1, typename Tensor2,
|
|
typename TiledMma>
|
|
__forceinline__ __device__ void gemm(TiledMma &tiled_mma, Tensor0 const &tCrA, Tensor1 const &tCrB, Tensor2 &tCrC) {
|
|
constexpr bool Is_RS = !cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value;
|
|
// Need to cast away const on tCrA since warpgroup_fence_operand doesn't take const
|
|
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
|
warpgroup_fence_operand(tCrC);
|
|
if constexpr (arrive) {
|
|
warpgroup_arrive();
|
|
}
|
|
if constexpr (zero_init) {
|
|
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
|
|
// Unroll the K mode manually to set scale D to 1
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
|
|
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
|
|
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
|
|
}
|
|
} else {
|
|
// cute::gemm(tiled_mma, tCrA, tCrB, tCrC);
|
|
// Unroll the K mode manually to set scale D to 1
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
|
|
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
|
|
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
|
|
}
|
|
}
|
|
if constexpr (commit) {
|
|
warpgroup_commit_batch();
|
|
}
|
|
if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
|
|
warpgroup_fence_operand(tCrC);
|
|
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
|
}
|
|
|
|
|
|
template<typename Layout>
|
|
__forceinline__ __device__ auto convert_layout_acc_rowcol(Layout acc_layout) {
|
|
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
|
|
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
|
|
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
auto l = acc_layout;
|
|
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)));
|
|
} else { // SM80
|
|
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
|
|
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
|
|
}
|
|
};
|
|
|
|
template<typename T, typename ReductionOp, int thread_group_width = 32>
|
|
__inline__ __device__ T WarpAllReduce(T val) {
|
|
ReductionOp op;
|
|
#pragma unroll
|
|
for (int mask = thread_group_width / 2; mask > 0; mask /= 2) {
|
|
val = op(val, __shfl_xor_sync(0xffffffff, val, mask));
|
|
}
|
|
return val;
|
|
}
|