mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
* 支持稀疏attn * fix bug * code style * fix moba attn get kv shape * 修复a100编译 * codestyle * code style * code style * code style * fix conflict * 增加单侧 * code style * 增加eblite 加载时间 * fix bug * for ci * for ci * for ci * for ci * 支持mlp block size 128 * 增加小算子单测 * fix 单测 mlp * 将环境变量加入到config里面 * fix rollout config
749 lines
27 KiB
C++
749 lines
27 KiB
C++
// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <cuda_fp16.h>
|
|
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
|
#include <cuda_bf16.h>
|
|
#endif
|
|
#include <cutlass/array.h>
|
|
#include <cutlass/cutlass.h>
|
|
#include <cutlass/numeric_conversion.h>
|
|
#include <cutlass/numeric_types.h>
|
|
#include <cub/cub.cuh>
|
|
#include "cute/tensor.hpp"
|
|
#include "cute/algorithm/copy.hpp"
|
|
#include "cute/algorithm/gemm.hpp"
|
|
#include "cute/int_tuple.hpp"
|
|
#include <cute/arch/cluster_sm90.hpp>
|
|
#include <cub/cub.cuh>
|
|
#include "cutlass/layout/layout.h"
|
|
#include "cutlass/numeric_types.h"
|
|
#include "cutlass/pipeline/pipeline.hpp"
|
|
#include "cutlass/cluster_launch.hpp"
|
|
#include "cutlass/arch/reg_reconfig.h"
|
|
#include "cute/atom/mma_atom.hpp"
|
|
#include "cutlass/gemm/collective/collective_builder.hpp"
|
|
|
|
using namespace cute;
|
|
|
|
template<typename T>
|
|
struct PackedHalf;
|
|
|
|
template<>
|
|
struct PackedHalf<cutlass::half_t> {
|
|
using Type = __half2;
|
|
};
|
|
|
|
template<>
|
|
struct PackedHalf<cutlass::bfloat16_t> {
|
|
using Type = nv_bfloat162;
|
|
};
|
|
|
|
template<>
|
|
struct PackedHalf<phi::dtype::float16> {
|
|
using Type = __half2;
|
|
};
|
|
|
|
template<>
|
|
struct PackedHalf<phi::dtype::bfloat16> {
|
|
using Type = nv_bfloat162;
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
struct HalfSub;
|
|
|
|
template<>
|
|
struct HalfSub<cutlass::half_t> {
|
|
inline __device__ void operator()(uint32_t* result_ptr, const uint32_t magic_num) {
|
|
asm volatile("sub.f16x2 %0, %1, %2;\n" : "=r"(*result_ptr) : "r"(*result_ptr), "r"(magic_num));
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct HalfSub<cutlass::bfloat16_t> {
|
|
inline __device__ void operator()(uint32_t* result_ptr, const uint32_t magic_num) {
|
|
*reinterpret_cast<nv_bfloat162*>(result_ptr) -= *reinterpret_cast<const nv_bfloat162*>(&magic_num);
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
struct HalfMul;
|
|
|
|
template<>
|
|
struct HalfMul<cutlass::half_t> {
|
|
inline __device__ void operator()(uint32_t* result_ptr, const uint32_t magic_num) {
|
|
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(*result_ptr) : "r"(*result_ptr), "r"(magic_num));
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct HalfMul<cutlass::bfloat16_t> {
|
|
inline __device__ void operator()(uint32_t* result_ptr, const uint32_t magic_num) {
|
|
*reinterpret_cast<nv_bfloat162*>(result_ptr) *= *reinterpret_cast<const nv_bfloat162*>(&magic_num);
|
|
}
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
struct HalfMax;
|
|
template<>
|
|
struct HalfMax<cutlass::half_t> {
|
|
inline __device__ __half2 operator()(const __half2 x, const __half2 y) {
|
|
__half2 res;
|
|
asm volatile("max.f16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct HalfMax<cutlass::bfloat16_t> {
|
|
inline __device__ nv_bfloat162 operator()(const nv_bfloat162 x, const nv_bfloat162 y) {
|
|
nv_bfloat162 res;
|
|
asm volatile("max.bf16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
struct HalfMin;
|
|
template<>
|
|
struct HalfMin<cutlass::half_t> {
|
|
inline __device__ __half2 operator()(const __half2 x, const __half2 y) {
|
|
__half2 res;
|
|
asm volatile("min.f16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct HalfMin<cutlass::bfloat16_t> {
|
|
inline __device__ nv_bfloat162 operator()(const nv_bfloat162 x, const nv_bfloat162 y) {
|
|
nv_bfloat162 res;
|
|
asm volatile("min.bf16x2 %0, %1, %2;\n" :
|
|
"=r"(*reinterpret_cast<uint32_t*>(&res)) :
|
|
"r"(*reinterpret_cast<const uint32_t*>(&x)),
|
|
"r"(*reinterpret_cast<const uint32_t*>(&y)));
|
|
return res;
|
|
}
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
struct MaxOp {
|
|
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
|
|
};
|
|
|
|
template <>
|
|
struct MaxOp<float> {
|
|
__device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
|
|
};
|
|
|
|
template<typename T>
|
|
struct MinOp {
|
|
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x < y ? x : y; }
|
|
};
|
|
|
|
template <>
|
|
struct MinOp<float> {
|
|
__device__ __forceinline__ float operator()(float const &x, float const &y) { return min(x, y); }
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
struct SumOp {
|
|
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
|
|
};
|
|
|
|
template<typename T, bool Is_K>
|
|
inline __device__ static void convert_c8_2_half(uint32_t *src, T *dst, const T *cache_scale, const T* cache_zp) {
|
|
uint32_t* half_result_ptr = reinterpret_cast<uint32_t*>(dst);
|
|
if constexpr (std::is_same_v<T, cutlass::bfloat16_t>) {
|
|
static constexpr uint32_t fp32_base = 0x4B000000;
|
|
float fp32_intermediates[4];
|
|
|
|
uint32_t* fp32_intermediates_casted = reinterpret_cast<uint32_t*>(fp32_intermediates);
|
|
fp32_intermediates_casted[0] = __byte_perm(*src, fp32_base, 0x7650);
|
|
fp32_intermediates_casted[1] = __byte_perm(*src, fp32_base, 0x7651);
|
|
fp32_intermediates_casted[2] = __byte_perm(*src, fp32_base, 0x7652);
|
|
fp32_intermediates_casted[3] = __byte_perm(*src, fp32_base, 0x7653);
|
|
|
|
#pragma unroll
|
|
for (int ii = 0; ii < 4; ++ii) {
|
|
fp32_intermediates[ii] -= 8388608.f;
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int ii = 0; ii < 2; ++ii) {
|
|
half_result_ptr[ii] = __byte_perm(fp32_intermediates_casted[2 * ii + 0], fp32_intermediates_casted[2 * ii + 1], 0x7632);
|
|
}
|
|
} else {
|
|
static constexpr uint32_t head_for_fp16 = 0x64006400;
|
|
half_result_ptr[0] = __byte_perm(*src, head_for_fp16, 0x7150);
|
|
half_result_ptr[1] = __byte_perm(*src, head_for_fp16, 0x7352);
|
|
}
|
|
|
|
using pack_half = typename PackedHalf<T>::Type;
|
|
#pragma unroll
|
|
for (int i = 0; i < 2; i++){
|
|
if constexpr (Is_K) {
|
|
HalfSub<T>()(half_result_ptr + i, *reinterpret_cast<const uint32_t*>(cache_zp + i * 2));
|
|
HalfMul<T>()(half_result_ptr + i, *reinterpret_cast<const uint32_t*>(cache_scale + i * 2));
|
|
} else {
|
|
pack_half bias;
|
|
pack_half scale;
|
|
bias.x = cache_zp[0];
|
|
bias.y = cache_zp[0];
|
|
scale.x = cache_scale[0];
|
|
scale.y = cache_scale[0];
|
|
HalfSub<T>()(half_result_ptr + i, *reinterpret_cast<const uint32_t*>(&bias));
|
|
HalfMul<T>()(half_result_ptr + i, *reinterpret_cast<const uint32_t*>(&scale));
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T, bool Is_K>
|
|
inline __device__ static void convert_c4_2_half(uint32_t *src, T *dst, const T *cache_scale, const T* cache_zp) {
|
|
using pack_half = typename PackedHalf<T>::Type;
|
|
static constexpr uint32_t MASK = 0x0f0f0f0f;
|
|
static constexpr uint32_t head_for_fp16 = std::is_same_v<T, cutlass::bfloat16_t> ? 0x43004300 : 0x64006400;
|
|
static constexpr uint32_t mask_for_c42fp16_one = 0x7253;
|
|
static constexpr uint32_t mask_for_c42fp16_two = 0x7051;
|
|
uint32_t* result_ptr = reinterpret_cast<uint32_t*>(dst);
|
|
uint32_t source = *reinterpret_cast<uint32_t const*>(src);
|
|
// source = {e0 e4 e1 e5 e2 e6 e3 e7}
|
|
uint32_t bottom_i4s = source & MASK;
|
|
// bottom_i4s = {0 e4 0 e5 0 e6 0 e7}
|
|
uint32_t top_i4s = (source >> 4) & MASK;
|
|
// top_i4s = {0 e0 0 e1 0 e2 0 e3}
|
|
asm volatile("prmt.b32 %0,%1,%2,%3;\n" : "=r"(result_ptr[0]) : "r"(top_i4s), "n"(head_for_fp16), "n"(mask_for_c42fp16_one));
|
|
// result_ptr[0] = {e0 e1}
|
|
asm volatile("prmt.b32 %0,%1,%2,%3;\n" : "=r"(result_ptr[1]) : "r"(top_i4s), "n"(head_for_fp16), "n"(mask_for_c42fp16_two));
|
|
asm volatile("prmt.b32 %0,%1,%2,%3;\n" : "=r"(result_ptr[2]) : "r"(bottom_i4s), "n"(head_for_fp16), "n"(mask_for_c42fp16_one));
|
|
asm volatile("prmt.b32 %0,%1,%2,%3;\n" : "=r"(result_ptr[3]) : "r"(bottom_i4s), "n"(head_for_fp16), "n"(mask_for_c42fp16_two));
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < 4; ++i) {
|
|
if constexpr (Is_K) {
|
|
const int ith_col = i % 2 * 2;
|
|
HalfSub<T>()(result_ptr + i, *reinterpret_cast<const uint32_t*>(cache_zp + ith_col));
|
|
HalfMul<T>()(result_ptr + i, *reinterpret_cast<const uint32_t*>(cache_scale + ith_col));
|
|
} else {
|
|
const int ith_col = i / 2;
|
|
pack_half bias;
|
|
pack_half scale;
|
|
bias.x = cache_zp[ith_col];
|
|
bias.y = cache_zp[ith_col];
|
|
scale.x = cache_scale[ith_col];
|
|
scale.y = cache_scale[ith_col];
|
|
HalfSub<T>()(result_ptr + i, *reinterpret_cast<const uint32_t*>(&bias));
|
|
HalfMul<T>()(result_ptr + i, *reinterpret_cast<const uint32_t*>(&scale));
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename CacheKV_traits, typename T, int kHeadDim, int kDataNumPer2Byte, bool A_in_regs=false, typename Tensor0, typename Tensor1,
|
|
typename Tensor2, typename Tensor3, typename Tensor4,
|
|
typename TiledMma, typename ThrCopy0, typename TiledCopy0>
|
|
inline __device__ void gemm_qk_quant(
|
|
Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCsA, Tensor3 &tCrB,
|
|
Tensor4 const& sB, TiledMma tiled_mma,
|
|
ThrCopy0 smem_thr_copy_A,
|
|
TiledCopy0 smem_tiled_copy_A,
|
|
const int32_t tidx,
|
|
const T * cache_scale, const T * cache_zp) {
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc));
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc));
|
|
Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view));
|
|
if (!A_in_regs) {
|
|
copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{}));
|
|
}
|
|
uint32_t *sBdata = reinterpret_cast<uint32_t *>(sB.data().get()) + tidx * (kDataNumPer2Byte / 4);
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < size<2>(tCrA); ++i) {
|
|
if (i < size<2>(tCrA) - 1) {
|
|
if (!A_in_regs) {
|
|
copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1));
|
|
}
|
|
}
|
|
if constexpr (kDataNumPer2Byte == 4) {
|
|
convert_c4_2_half<T, true>(sBdata + i * kHeadDim, tCrB.data(), cache_scale + i * 4, cache_zp + i * 4);
|
|
} else {
|
|
convert_c8_2_half<T, true>(sBdata + i * (kHeadDim * 2), tCrB.data(), cache_scale + i * 4, cache_zp + i * 4);
|
|
convert_c8_2_half<T, true>(sBdata + i * (kHeadDim * 2) + 1, tCrB.data() + 4, cache_scale + i * 4, cache_zp + i * 4);
|
|
}
|
|
|
|
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB, acc);
|
|
}
|
|
}
|
|
|
|
template<typename CacheKV_traits, typename T, int kHeadDim, int kDataNumPer2Byte, bool A_in_regs=false, typename Tensor0, typename Tensor1,
|
|
typename Tensor2, typename Tensor3, typename Tensor4,
|
|
typename TiledMma, typename ThrCopy0, typename TiledCopy0>
|
|
inline __device__ void gemm_value_quant(
|
|
Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCsA, Tensor3 &tCrB,
|
|
Tensor4 const& sB, TiledMma tiled_mma,
|
|
ThrCopy0 smem_thr_copy_A,
|
|
TiledCopy0 smem_tiled_copy_A,
|
|
int32_t tidx,
|
|
const T * cache_scale, const T * cache_zp) {
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc));
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc));
|
|
Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view));
|
|
if (!A_in_regs) {
|
|
copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{}));
|
|
}
|
|
uint32_t *sBdata = reinterpret_cast<uint32_t *>(sB.data().get()) + tidx * (2 * kDataNumPer2Byte / 4);
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < size<2>(tCrA); ++i) {
|
|
const int cur_idx = i * kHeadDim * (2 * kDataNumPer2Byte / 4);
|
|
|
|
if (i < size<2>(tCrA) - 1) {
|
|
if (!A_in_regs) {
|
|
copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1));
|
|
}
|
|
}
|
|
if constexpr (kDataNumPer2Byte == 4) {
|
|
convert_c4_2_half<T, false>(sBdata + cur_idx, tCrB.data(), cache_scale, cache_zp);
|
|
convert_c4_2_half<T, false>(sBdata + cur_idx + 1, tCrB.data() + 8, cache_scale + 2, cache_zp + 2);
|
|
} else {
|
|
convert_c8_2_half<T, false>(sBdata + cur_idx, tCrB.data(), cache_scale, cache_zp);
|
|
convert_c8_2_half<T, false>(sBdata + cur_idx + 1, tCrB.data() + 4, cache_scale + 1, cache_zp + 1);
|
|
convert_c8_2_half<T, false>(sBdata + cur_idx + 2, tCrB.data() + 8, cache_scale + 2, cache_zp + 2);
|
|
convert_c8_2_half<T, false>(sBdata + cur_idx + 3, tCrB.data() + 12, cache_scale + 3, cache_zp + 3);
|
|
}
|
|
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB, acc);
|
|
}
|
|
}
|
|
|
|
|
|
template<int kMiLen, typename Engine, typename Layout>
|
|
inline __device__ void apply_mask(Tensor<Engine, Layout> &scores, const uint32_t warp_id, const uint32_t col, const uint32_t reamin_seq_len) {
|
|
const int cols = size<1>(scores) / 2;
|
|
#pragma unroll
|
|
for (int mi = 0; mi < kMiLen; ++mi) {
|
|
#pragma unroll
|
|
for (int ni = 0; ni < cols; ++ni) {
|
|
const int col_index = warp_id * 8 + ni * 32 + col * 2;
|
|
if (col_index >= reamin_seq_len) {
|
|
scores(mi, ni * 2) = -INFINITY;
|
|
}
|
|
if (col_index + 1 >= reamin_seq_len) {
|
|
scores(mi, ni * 2 + 1) = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<int THREADS>
|
|
struct Allreduce {
|
|
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
|
|
template<typename T, typename Operator>
|
|
static __device__ inline T run(T x, Operator &op) {
|
|
constexpr int OFFSET = THREADS / 2;
|
|
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
|
|
return Allreduce<OFFSET>::run(x, op);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct Allreduce<2> {
|
|
template<typename T, typename Operator>
|
|
static __device__ inline T run(T x, Operator &op) {
|
|
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
|
|
return x;
|
|
}
|
|
};
|
|
|
|
template<int kMiLen, typename Engine0, typename Layout0, typename T>
|
|
__device__ inline void reduce_max(Tensor<Engine0, Layout0> const& tensor, T *scores_max){
|
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
|
MaxOp<T> max_op;
|
|
#pragma unroll
|
|
for (int mi = 0; mi < kMiLen; ++mi) {
|
|
#pragma unroll
|
|
for (int ni = 0; ni < size<1>(tensor); ni++) {
|
|
scores_max[mi] = max_op(scores_max[mi], tensor(mi, ni));
|
|
}
|
|
scores_max[mi] = Allreduce<4>::run(scores_max[mi], max_op);
|
|
}
|
|
}
|
|
|
|
template <int kMiLen, typename Engine0, typename Layout0, typename T>
|
|
inline __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, T const *max, T *sum, const float scale) {
|
|
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
|
#pragma unroll
|
|
for (int mi = 0; mi < kMiLen; ++mi) {
|
|
const float max_scaled = max[mi] * scale;
|
|
#pragma unroll
|
|
for (int ni = 0; ni < size<1>(tensor); ++ni) {
|
|
tensor(mi, ni) = expf(tensor(mi, ni) * scale - max_scaled);
|
|
sum[mi] += tensor(mi, ni);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename paddle_type>
|
|
struct cuteType;
|
|
|
|
template <>
|
|
struct cuteType<phi::dtype::float16> {
|
|
using type = cutlass::half_t;
|
|
};
|
|
|
|
template <>
|
|
struct cuteType<phi::dtype::bfloat16> {
|
|
using type = cutlass::bfloat16_t;
|
|
};
|
|
|
|
template<typename T>
|
|
__forceinline__ __device__ auto float_2_half2(const float x) {
|
|
if constexpr (std::is_same<T, cutlass::half_t>::value) {
|
|
return __float2half2_rn(x);
|
|
} else {
|
|
return __float2bfloat162_rn(x);
|
|
}
|
|
}
|
|
|
|
|
|
struct uint16 {
|
|
uint4 u;
|
|
uint4 v;
|
|
uint4 s;
|
|
uint4 t;
|
|
};
|
|
|
|
|
|
struct uint8 {
|
|
uint4 u;
|
|
uint4 v;
|
|
};
|
|
|
|
template<int BYTES>
|
|
struct BytesToType {};
|
|
|
|
template<>
|
|
struct BytesToType<64> {
|
|
using Type = uint16;
|
|
static_assert(sizeof(Type) == 64);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<32> {
|
|
using Type = uint8;
|
|
static_assert(sizeof(Type) == 32);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<16> {
|
|
using Type = uint4;
|
|
static_assert(sizeof(Type) == 16);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<8> {
|
|
using Type = uint64_t;
|
|
static_assert(sizeof(Type) == 8);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<4> {
|
|
using Type = uint32_t;
|
|
static_assert(sizeof(Type) == 4);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<2> {
|
|
using Type = uint16_t;
|
|
static_assert(sizeof(Type) == 2);
|
|
};
|
|
|
|
template<>
|
|
struct BytesToType<1> {
|
|
using Type = uint8_t;
|
|
static_assert(sizeof(Type) == 1);
|
|
};
|
|
|
|
template<typename Elt_type, uint32_t NUM_ELT>
|
|
struct Vec {
|
|
|
|
enum { BYTES = NUM_ELT * sizeof(Elt_type) };
|
|
|
|
using Vec_type = typename BytesToType<BYTES>::Type;
|
|
|
|
using Alias_type = union {
|
|
Vec_type vec;
|
|
Elt_type elt[NUM_ELT];
|
|
};
|
|
|
|
Alias_type data;
|
|
|
|
inline __device__ Vec() {}
|
|
|
|
template<typename S>
|
|
inline __device__ void to(Vec<S, NUM_ELT> &other) {
|
|
#pragma unroll
|
|
for( int it = 0; it < NUM_ELT; it++ ) {
|
|
other.data.elt[it] = S(this->data.elt[it]);
|
|
}
|
|
}
|
|
|
|
template<typename Op>
|
|
inline __device__ void assign(const Op &op) {
|
|
#pragma unroll
|
|
for( int it = 0; it < NUM_ELT; it++ ) {
|
|
this->data.elt[it] = op(it);
|
|
}
|
|
}
|
|
|
|
inline __device__ void load_from(const void *base_ptr) {
|
|
this->data.vec = *reinterpret_cast<const Vec_type *>(base_ptr);
|
|
}
|
|
|
|
|
|
inline __device__ void store_to(void *base_ptr) {
|
|
*reinterpret_cast<Vec_type *>(base_ptr) = this->data.vec;
|
|
}
|
|
|
|
inline __device__ void add(const Vec<Elt_type, NUM_ELT> &other) {
|
|
static_assert(NUM_ELT % 2 == 0);
|
|
using type = typename PackedHalf<Elt_type>::Type;
|
|
#pragma unroll
|
|
for (int it = 0; it < NUM_ELT / 2; it++) {
|
|
type b = *reinterpret_cast<const type *>(other.data.elt + it * 2);
|
|
*reinterpret_cast<type *>(this->data.elt + it * 2) += b;
|
|
}
|
|
}
|
|
|
|
inline __device__ void set_zero() {
|
|
constexpr int size = sizeof(Vec_type) / sizeof(int);
|
|
#pragma unroll
|
|
for (int i = 0; i < size; ++i) {
|
|
(reinterpret_cast<int *>(this->data.elt))[i] = 0;
|
|
}
|
|
}
|
|
|
|
inline __device__ void fma(const Vec<Elt_type, NUM_ELT> &scale, const Vec<Elt_type, NUM_ELT> &bias) {
|
|
static_assert(NUM_ELT % 2 == 0);
|
|
using type = typename PackedHalf<Elt_type>::Type;
|
|
#pragma unroll
|
|
for (int it = 0; it < NUM_ELT / 2; it++) {
|
|
type a = *reinterpret_cast<const type *>(scale.data.elt + it * 2);
|
|
type b = *reinterpret_cast<const type *>(bias.data.elt + it * 2);
|
|
*reinterpret_cast<type *>(this->data.elt + it * 2) += a * b;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename T, int PackSize>
|
|
inline __device__ void apply_rotary_embedding(Vec<T, PackSize>& vec, Vec<float, PackSize / 2>& cos, Vec<float, PackSize / 2>& sin) {
|
|
static_assert(PackSize % 2 == 0);
|
|
#pragma unroll
|
|
for (int i = 0; i < PackSize / 2; i++) {
|
|
const float cos_inv_freq = cos.data.elt[i];
|
|
const float sin_inv_freq = sin.data.elt[i];
|
|
const float v1 = static_cast<float>(vec.data.elt[2 * i]);
|
|
const float v2 = static_cast<float>(vec.data.elt[2 * i + 1]);
|
|
vec.data.elt[2 * i] = static_cast<T>(cos_inv_freq * v1 - sin_inv_freq * v2);
|
|
vec.data.elt[2 * i + 1] = static_cast<T>(sin_inv_freq * v1 + cos_inv_freq * v2);
|
|
}
|
|
}
|
|
|
|
template <bool Is_even_MN=true, typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Engine2, typename Layout2>
|
|
__forceinline__ __device__ void copy(
|
|
TiledCopy tiled_copy, Tensor<Engine0, Layout0> const &S,
|
|
Tensor<Engine1, Layout1> &D,
|
|
Tensor<Engine2, Layout2> const &identity_MN,
|
|
const int max_MN = 0) {
|
|
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
|
|
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
|
|
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
|
|
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
|
|
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
|
|
#pragma unroll
|
|
for (int m = 0; m < size<1>(S); ++m) {
|
|
if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
|
|
#pragma unroll
|
|
for (int k = 0; k < size<2>(S); ++k) {
|
|
cute::copy(tiled_copy, S(_, m, k), D(_, m, k));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<bool A_in_regs=false, bool B_in_regs=false, typename Tensor0, typename Tensor1,
|
|
typename Tensor2, typename Tensor3, typename Tensor4,
|
|
typename TiledMma, typename ThrCopy0, typename ThrCopy1,
|
|
typename TiledCopy0, typename TiledCopy1>
|
|
inline __device__ void gemm(
|
|
Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsA,
|
|
Tensor4 const& tCsB, TiledMma tiled_mma,
|
|
ThrCopy0 &smem_thr_copy_A, ThrCopy1 &smem_thr_copy_B,
|
|
TiledCopy0 &smem_tiled_copy_A, TiledCopy1 &smem_tiled_copy_B) {
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc));
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc));
|
|
CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB));
|
|
Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view));
|
|
Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
|
|
CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view));
|
|
|
|
if (!A_in_regs) { copy(smem_tiled_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{})); }
|
|
if (!B_in_regs) { copy(smem_tiled_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{})); }
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < size<2>(tCrA); ++i) {
|
|
if (i < size<2>(tCrA) - 1) {
|
|
if (!A_in_regs) { copy(smem_tiled_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1)); }
|
|
if (!B_in_regs) { copy(smem_tiled_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1)); }
|
|
}
|
|
cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
|
|
}
|
|
}
|
|
|
|
template <typename To_type, typename Engine, typename Layout>
|
|
inline __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
|
|
using From_type = typename Engine::value_type;
|
|
constexpr int numel = decltype(size(tensor))::value;
|
|
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
|
|
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
|
|
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
|
|
}
|
|
|
|
template<typename T, typename ReductionOp, int block_size>
|
|
__inline__ __device__ T BlockAllReduce(T val) {
|
|
typedef cub::BlockReduce<T, block_size> BlockReduce;
|
|
__shared__ typename BlockReduce::TempStorage temp_storage;
|
|
__shared__ T result_broadcast;
|
|
T result = BlockReduce(temp_storage).Reduce(val, ReductionOp());
|
|
if (threadIdx.x == 0) { result_broadcast = result; }
|
|
__syncthreads();
|
|
return result_broadcast;
|
|
}
|
|
|
|
template<typename MMA_traits, typename Layout>
|
|
__forceinline__ __device__ auto convert_layout_acc_Aregs(Layout acc_layout) {
|
|
using X = Underscore;
|
|
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
|
|
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
|
|
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
static_assert(decltype(rank(get<0>(acc_layout)))::value == 3);
|
|
auto l = logical_divide(get<0>(acc_layout), Shape<X, X, _2>{}); // (2, 2, (2, N / 16)))
|
|
return make_layout(make_layout(get<0>(l), get<1>(l), get<2, 0>(l)), get<1>(acc_layout), make_layout(get<2, 1>(l), get<2>(acc_layout)));
|
|
} else { // SM80
|
|
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
constexpr int mma_shape_K = get<2>(typename MMA_traits::Shape_MNK{});
|
|
static_assert(mma_shape_K == 8 || mma_shape_K == 16);
|
|
if constexpr (mma_shape_K == 8) {
|
|
return acc_layout;
|
|
} else {
|
|
auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
|
|
return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
|
|
}
|
|
}
|
|
};
|
|
|
|
template <bool zero_init=false, int wg_wait=0, bool arrive=true, bool commit=true, typename Tensor0, typename Tensor1, typename Tensor2, typename TiledMma>
|
|
__forceinline__ __device__ void gemm(TiledMma &tiled_mma, Tensor0 const &tCrA, Tensor1 const &tCrB, Tensor2 &tCrC) {
|
|
constexpr bool Is_RS = !cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value;
|
|
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
|
warpgroup_fence_operand(tCrC);
|
|
if constexpr (arrive) {
|
|
warpgroup_arrive();
|
|
}
|
|
if constexpr (zero_init) {
|
|
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
|
|
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
|
|
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
|
|
}
|
|
} else {
|
|
CUTLASS_PRAGMA_UNROLL
|
|
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
|
|
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
|
|
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
|
|
}
|
|
}
|
|
if constexpr (commit) {
|
|
warpgroup_commit_batch();
|
|
}
|
|
if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
|
|
warpgroup_fence_operand(tCrC);
|
|
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
|
}
|
|
|
|
|
|
template<typename Layout>
|
|
__forceinline__ __device__ auto convert_layout_acc_rowcol(Layout acc_layout) {
|
|
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
|
|
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
|
|
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
auto l = acc_layout;
|
|
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)));
|
|
} else { // SM80
|
|
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
|
static_assert(decltype(rank(acc_layout))::value == 3);
|
|
auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
|
|
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
|
|
}
|
|
};
|
|
|
|
template<typename T, typename ReductionOp, int thread_group_width = 32>
|
|
__inline__ __device__ T WarpAllReduce(T val) {
|
|
ReductionOp op;
|
|
#pragma unroll
|
|
for (int mask = thread_group_width / 2; mask > 0; mask /= 2) {
|
|
val = op(val, __shfl_xor_sync(0xffffffff, val, mask));
|
|
}
|
|
return val;
|
|
}
|
|
|
|
|
|
template <int kPackSize, int knthreads>
|
|
__device__ inline int get_data_count(const float * src, const float limit_value) {
|
|
int count = 0;
|
|
#pragma unroll
|
|
for (int i = 0; i < kPackSize; i++) {
|
|
if (src[i] >= limit_value) {
|
|
count++;
|
|
}
|
|
}
|
|
count = BlockAllReduce<int, SumOp<int>, knthreads>(count);
|
|
return count;
|
|
}
|