mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* 添加paddleclas模型 * 更新README_CN * 更新README_CN * 更新README * update get_model.sh * update get_models.sh * update paddleseg models * update paddle_seg models * update paddle_seg models * modified test resources * update benchmark_gpu_trt.sh * add paddle detection * add paddledetection to benchmark * modified benchmark cmakelists * update benchmark scripts * modified benchmark function calling * modified paddledetection documents * upadte getmodels.sh * add PaddleDetectonModel * reset examples/paddledetection * resolve conflict * update pybind * resolve conflict * fix bug * delete debug mode * update checkarch log * update trt inputs example * Update README.md * add ppocr_v4 * update ppocr_v4 * update ocr_v4 * update ocr_v4 * update ocr_v4 * update ocr_v4 --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
148 lines
6.3 KiB
C++
Executable File
148 lines
6.3 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <pybind11/stl.h>
|
|
|
|
#include "fastdeploy/pybind/main.h"
|
|
|
|
namespace fastdeploy {
|
|
void BindPPOCRv4(pybind11::module& m) {
|
|
// PPOCRv4
|
|
pybind11::class_<pipeline::PPOCRv4, FastDeployModel>(m, "PPOCRv4")
|
|
|
|
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
|
|
fastdeploy::vision::ocr::Classifier*,
|
|
fastdeploy::vision::ocr::Recognizer*>())
|
|
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
|
|
fastdeploy::vision::ocr::Recognizer*>())
|
|
.def_property("cls_batch_size", &pipeline::PPOCRv4::GetClsBatchSize,
|
|
&pipeline::PPOCRv4::SetClsBatchSize)
|
|
.def_property("rec_batch_size", &pipeline::PPOCRv4::GetRecBatchSize,
|
|
&pipeline::PPOCRv4::SetRecBatchSize)
|
|
.def("clone", [](pipeline::PPOCRv4& self) { return self.Clone(); })
|
|
.def("predict",
|
|
[](pipeline::PPOCRv4& self, pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::OCRResult res;
|
|
self.Predict(&mat, &res);
|
|
return res;
|
|
})
|
|
.def("batch_predict",
|
|
[](pipeline::PPOCRv4& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::OCRResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
});
|
|
}
|
|
void BindPPOCRv3(pybind11::module& m) {
|
|
// PPOCRv3
|
|
pybind11::class_<pipeline::PPOCRv3, FastDeployModel>(m, "PPOCRv3")
|
|
|
|
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
|
|
fastdeploy::vision::ocr::Classifier*,
|
|
fastdeploy::vision::ocr::Recognizer*>())
|
|
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
|
|
fastdeploy::vision::ocr::Recognizer*>())
|
|
.def_property("cls_batch_size", &pipeline::PPOCRv3::GetClsBatchSize,
|
|
&pipeline::PPOCRv3::SetClsBatchSize)
|
|
.def_property("rec_batch_size", &pipeline::PPOCRv3::GetRecBatchSize,
|
|
&pipeline::PPOCRv3::SetRecBatchSize)
|
|
.def("clone", [](pipeline::PPOCRv3& self) { return self.Clone(); })
|
|
.def("predict",
|
|
[](pipeline::PPOCRv3& self, pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::OCRResult res;
|
|
self.Predict(&mat, &res);
|
|
return res;
|
|
})
|
|
.def("batch_predict",
|
|
[](pipeline::PPOCRv3& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::OCRResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
});
|
|
}
|
|
|
|
void BindPPOCRv2(pybind11::module& m) {
|
|
// PPOCRv2
|
|
pybind11::class_<pipeline::PPOCRv2, FastDeployModel>(m, "PPOCRv2")
|
|
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
|
|
fastdeploy::vision::ocr::Classifier*,
|
|
fastdeploy::vision::ocr::Recognizer*>())
|
|
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
|
|
fastdeploy::vision::ocr::Recognizer*>())
|
|
.def_property("cls_batch_size", &pipeline::PPOCRv2::GetClsBatchSize,
|
|
&pipeline::PPOCRv2::SetClsBatchSize)
|
|
.def_property("rec_batch_size", &pipeline::PPOCRv2::GetRecBatchSize,
|
|
&pipeline::PPOCRv2::SetRecBatchSize)
|
|
.def("clone", [](pipeline::PPOCRv2& self) { return self.Clone(); })
|
|
.def("predict",
|
|
[](pipeline::PPOCRv2& self, pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::OCRResult res;
|
|
self.Predict(&mat, &res);
|
|
return res;
|
|
})
|
|
.def("batch_predict",
|
|
[](pipeline::PPOCRv2& self, std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::OCRResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
});
|
|
}
|
|
|
|
void BindPPStructureV2Table(pybind11::module& m) {
|
|
// PPStructureV2Table
|
|
pybind11::class_<pipeline::PPStructureV2Table, FastDeployModel>(
|
|
m, "PPStructureV2Table")
|
|
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
|
|
fastdeploy::vision::ocr::Recognizer*,
|
|
fastdeploy::vision::ocr::StructureV2Table*>())
|
|
.def_property("rec_batch_size",
|
|
&pipeline::PPStructureV2Table::GetRecBatchSize,
|
|
&pipeline::PPStructureV2Table::SetRecBatchSize)
|
|
.def("clone",
|
|
[](pipeline::PPStructureV2Table& self) { return self.Clone(); })
|
|
.def("predict",
|
|
[](pipeline::PPStructureV2Table& self, pybind11::array& data) {
|
|
auto mat = PyArrayToCvMat(data);
|
|
vision::OCRResult res;
|
|
self.Predict(&mat, &res);
|
|
return res;
|
|
})
|
|
.def("batch_predict", [](pipeline::PPStructureV2Table& self,
|
|
std::vector<pybind11::array>& data) {
|
|
std::vector<cv::Mat> images;
|
|
for (size_t i = 0; i < data.size(); ++i) {
|
|
images.push_back(PyArrayToCvMat(data[i]));
|
|
}
|
|
std::vector<vision::OCRResult> results;
|
|
self.BatchPredict(images, &results);
|
|
return results;
|
|
});
|
|
}
|
|
|
|
} // namespace fastdeploy
|