mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* 11-02/14:35 * 新增输入数据format错误判断 * 优化推理过程,减少内存分配次数 * 支持多输入rknn模型 * rknn模型输出shape为三维时,输出将被强制对齐为4纬。现在将直接抹除rknn补充的shape,方便部分对输出shape进行判断的模型进行正确的后处理。 * 11-03/17:25 * 支持导出多输入RKNN模型 * 更新各种文档 * ppseg改用Fastdeploy中的模型进行转换 * 11-03/17:25 * 新增开源头 * 11-03/21:48 * 删除无用debug代码,补充注释 * 11-04/01:00 * 新增rkpicodet代码 * 11-04/13:13 * 提交编译缺少的文件 * 11-04/14:03 * 更新安装文档 * 11-04/14:21 * 更新picodet_s配置文件 * 11-04/14:21 * 更新picodet自适应输出结果 * 11-04/14:21 * 更新文档 * * 更新配置文件 * * 修正配置文件 * * 添加缺失的python文件 * * 修正文档 * * 修正代码格式问题0 * * 按照要求修改 * * 按照要求修改 * * 按照要求修改 * * 按照要求修改 * * 按照要求修改 * test
86 lines
2.7 KiB
C++
86 lines
2.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <iostream>
|
|
#include <string>
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void InferPicodet(const std::string& device = "cpu");
|
|
|
|
int main() {
|
|
InferPicodet("npu");
|
|
return 0;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption GetOption(const std::string& device) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (device == "npu") {
|
|
option.UseRKNPU2();
|
|
} else {
|
|
option.UseCpu();
|
|
}
|
|
return option;
|
|
}
|
|
|
|
fastdeploy::ModelFormat GetFormat(const std::string& device) {
|
|
auto format = fastdeploy::ModelFormat::ONNX;
|
|
if (device == "npu") {
|
|
format = fastdeploy::ModelFormat::RKNN;
|
|
} else {
|
|
format = fastdeploy::ModelFormat::ONNX;
|
|
}
|
|
return format;
|
|
}
|
|
|
|
std::string GetModelPath(std::string& model_path, const std::string& device) {
|
|
if (device == "npu") {
|
|
model_path += "rknn";
|
|
} else {
|
|
model_path += "onnx";
|
|
}
|
|
return model_path;
|
|
}
|
|
|
|
void InferPicodet(const std::string &device) {
|
|
std::string model_file = "./model/picodet_s_416_coco_npu/picodet_s_416_coco_npu_rk3588.";
|
|
std::string params_file;
|
|
std::string config_file = "./model/picodet_s_416_coco_npu/infer_cfg.yml";
|
|
|
|
fastdeploy::RuntimeOption option = GetOption(device);
|
|
fastdeploy::ModelFormat format = GetFormat(device);
|
|
model_file = GetModelPath(model_file, device);
|
|
auto model = fastdeploy::vision::detection::RKPicoDet(
|
|
model_file, params_file, config_file,option,format);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
auto image_file = "./images/000000014439.jpg";
|
|
auto im = cv::imread(image_file);
|
|
|
|
fastdeploy::vision::DetectionResult res;
|
|
clock_t start = clock();
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
clock_t end = clock();
|
|
auto dur = static_cast<double>(end - start);
|
|
printf("picodet_npu use time:%f\n", (dur / CLOCKS_PER_SEC));
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
auto vis_im = fastdeploy::vision::VisDetection(im, res,0.5);
|
|
cv::imwrite("picodet_npu_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./picodet_npu_result.jpg" << std::endl;
|
|
} |